

Toshihiro Nonaka TCHoU member meeting 2020

Based on : arXiv:2001.02852 (STAR Collaboration), submitted to Nature Physics

Net-proton number fluctuations and the Quantum Chromodynamics critical point

2020 Jan 5 [nucl-ex] .02852v1 2001 arXiv:

formation of a new phase of matter, Quark Gluon Plasma (QGP), a deconfined state of quarks and gluons¹ in a specific region of the temperature versus baryonic chemical potential phase diagram of strong interactions. A program to study the features of the phase diagram, such as a possible critical point, by varying the collision energy ($\sqrt{s_{\rm NN}}$), is performed at the Relativistic Heavy-Ion Collider (RHIC) facility. Non-monotonic variation with $\sqrt{s_{NN}}$ of moments of the net-baryon number distribution, related to the correlation length and the susceptibilities of the system, is suggested as a signature for a critical point 2.3. We report the first evidence of a non-monotonic variation in kurtosis \times variance of the net-proton number (proxy for net-baryon number) distribution as a function of $\sqrt{s_{\rm NN}}$ with 3.0 σ significance, for headon (central) gold-on-gold (Au+Au) collisions measured using the STAR detector 4 at RHIC. Non-central Au+Au collisions and models of heavy-ion collisions without a critical point show a monotonic variation as a function of $\sqrt{s_{\rm NN}}$.

One of the fundamental goals in physics is to understand the properties of matter when sub-

Introduction

- · C₄ measurement for critical point search
- C₆ measurement for crossover search
- Future plan

QCD phase diagram

A. Bzdak et al, 1906.00936

\checkmark Need to investigate the QCD phase structure in wide (μ_B ,T) region.

Beam Energy Scan

\checkmark Need to investigate the QCD phase structure in wide (µ_B,T) region.

- Crossover at $\mu_B = 0$ MeV Y. Aoki et al, Nature 443, 675(2006)
- 1st-order phase transition at large μ_B ?
- Critical point?

Beam Energy Scan

\checkmark Need to investigate the QCD phase structure in wide (μ_B ,T) region.

- Crossover at $\mu_B = 0$ MeV Y. Aoki et al, Nature 443, 675(2006)
- 1st-order phase transition at large μ_B?
- **Critical point?**

\checkmark Need to investigate the QCD phase structure in wide (µ_B,T) region.

$\sqrt{s_{NN}} (\text{GeV})$) No. of	events (n	nillion) $T_{\rm ch}~({ m MeV})~\mu$	$_{\rm B}~({\rm MeV})$
200		238	164.3	28
62.4		47	160.3	70
54.4		550	160.0	83
39	2010-	86	156.4	160
27	2014	30	155.0	144
19.6		15	153.9	188
14.5		20	151.6	264
11.5		6.6	149.4	287
7.7		3	144.3	398

- **Crossover** at $\mu_B = 0$ MeV *Y. Aoki et al, Nature* 443, 675(2006)
- 1st-order phase transition at large μ_B ?
- Critical point?

Higher-order fluctuations

- Moments and cumulants are mathematical measures of "shape" of a distribution which probe the fluctuation of observables.
 - Moments: mean (*M*), standard deviation (σ), skewness (*S*) and kurtosis (κ). \checkmark S and k are non-gaussian fluctuations. \checkmark

Cumulant *⇐* **Moment** \checkmark

 $<\delta N>=N-<N>$ $C_1 = M = \langle N \rangle$ $C_2 = \sigma^2 = \langle (\delta N)^2 \rangle$ $C_{3} = S\sigma^{3} = \langle (\delta N)^{3} \rangle$ $C_4 = \kappa \sigma^4 = \langle (\delta N)^4 \rangle - 3 \langle (\delta N)^2 \rangle^2$

Cumulant : additivity \checkmark

 $C_n(X+Y) = C_n(X) + C_n(Y)$

proportional to volume

Fluctuations of conserved quantities

Net baryon, net charge and net strangeness "Net" : positive - negative $\Delta N_q = N_q - N_{\overline{q}}, \quad q = B, Q, S$ No. of positively charged No. of negatively charged particles in one collision particles in one collision

(1) Sensitive to correlation length

$$C_2 = \langle \delta N \rangle^2 >_c \approx \xi^2 \qquad C_5 = \langle \delta N \rangle^5 >_c \approx \xi^6$$

$$C_3 = \langle \delta N \rangle^3 >_c \approx \xi^{4.5} \quad C_6 = \langle \delta N \rangle^6 >_c \approx \xi^1$$

$$C_4 = \langle \delta N \rangle^4 >_c \approx \xi^7$$

M. A. Stephanov, Phys. Rev. Lett. 102, 032301 (2009) M. A. Stephanov, Phys. Rev. Lett. 107, 052301 (2011) MAsakawa, S. Ejiri and M. Kitazawa, Phys. Rev. Lett. 103, 262301 (2009)

(2) Direct comparison with susceptibilities.

M. Cheng et al, PRD 79, 074505 (2009)

$$S\sigma = \frac{C_3}{C_2} = \frac{\chi_3}{\chi_2} \quad \kappa \sigma^2 = \frac{C_4}{C_2} = \frac{\chi_4}{\chi_2}$$
$$\chi_n^q = \frac{1}{VT^3} \times C_n^q = \frac{\partial^n p / T^4}{\partial \mu_q^n}, \quad q = B, Q, S$$

Net-proton multiplicity distributions

✓ RAW distribution!

STAR Collaboration, arXiv:2001.02852, submitted to NP

Efficiency correction

Efficiency follows binomial distribution.

Factorial moments can be easily corrected.

- M. Kitazawa and M. Asakawa : PRC.86.069902 (2012)
- A. Bzdak and V. Koch : PRC.86.044904 (2012), X. Luo : PRC.91.034907 (2016)
- T. Nonaka, M. Kitazawa, S. Esumi : PRC.95.064912 (2017)

$$B(n,N;\varepsilon) = \frac{N!}{n!(N-n)!} \varepsilon^n (1-\varepsilon)^{N-n} \quad f_{ik} = \varepsilon_p^i \varepsilon_{pbar}^k F_{ik}$$

Corrected cumulants are expressed in terms of measured factorial moments and efficiency.

 $\kappa_4(\Delta N) = \left(\left((f_{10}/\varepsilon_1) + 7(f_{20}/\varepsilon_1^2) + 6(f_{30}/\varepsilon_1^3) + (f_{40}/\varepsilon_1^4) - 4(f_{10}/\varepsilon_1)^2 - \right) \right)$ $12(f_{20}/\varepsilon_1^2)(f_{10}/\varepsilon_1) - 4(f_{30}/\varepsilon_1^3)(f_{10}/\varepsilon_1) + 6(f_{10}/\varepsilon_1)^3 + 6(f_{20}/\varepsilon_1^2)(f_{10}/\varepsilon_1)^2 - 3(f_{10}/\varepsilon_1)^4) - 6(f_{20}/\varepsilon_1^2)(f_{20}/\varepsilon_1^2)(f_{20}/\varepsilon_1)^2 - 6(f_{20}/\varepsilon_1)^4 - 6(f_{20}/\varepsilon_1)^2 - 6(f_{20}/\varepsilon_1)^4 - 6(f_{20}/\varepsilon_1)^$ $4((f_{11}/\varepsilon_1/\varepsilon_2) - (f_{10}/\varepsilon_1)(f_{01}/\varepsilon_2) + 3(f_{21}/\varepsilon_1^2/\varepsilon_2) - 3(f_{20}/\varepsilon_1^2)(f_{01}/\varepsilon_2) + (f_{31}/\varepsilon_1^3/\varepsilon_2) - 3(f_{20}/\varepsilon_1^2)(f_{01}/\varepsilon_2) + (f_{31}/\varepsilon_1^3/\varepsilon_2) - 3(f_{20}/\varepsilon_1^2)(f_{01}/\varepsilon_2) + (f_{31}/\varepsilon_1^3/\varepsilon_2) - 3(f_{20}/\varepsilon_1^2)(f_{01}/\varepsilon_2) + (f_{31}/\varepsilon_1^3/\varepsilon_2) - 3(f_{20}/\varepsilon_1^2)(f_{01}/\varepsilon_2) + (f_{21}/\varepsilon_1^3/\varepsilon_2) - 3(f_{20}/\varepsilon_1^2)(f_{21}/\varepsilon_2) + 3(f_{21}/\varepsilon_1^3/\varepsilon_2) - 3(f_{21}/\varepsilon_1^2)(f_{21}/\varepsilon_2) + 3(f_{21}/\varepsilon_1^3/\varepsilon_2) - 3(f_{21}/\varepsilon_1^2)(f_{21}/\varepsilon_2) + 3(f_{21}/\varepsilon_1^3/\varepsilon_2) - 3(f_{21}/\varepsilon_1^2)(f_{21}/\varepsilon_2) + 3(f_{21}/\varepsilon_1^3/\varepsilon_2) - 3(f_{21}/\varepsilon_1^3/\varepsilon_1^3/\varepsilon_1^3/\varepsilon_1) - 3(f_{21}/\varepsilon_1^3/\varepsilon_1^3/\varepsilon_1) - 3(f_{21}/\varepsilon_1^3/\varepsilon_1^3/\varepsilon$ $(f_{30}/\varepsilon_1^3)(f_{01}/\varepsilon_2) - 3(f_{11}/\varepsilon_1/\varepsilon_2)(f_{10}/\varepsilon_1) + 3(f_{10}/\varepsilon_1)^2(f_{01}/\varepsilon_2) - 3(f_{21}/\varepsilon_1^2/\varepsilon_2)(f_{10}/\varepsilon_1) + 3(f_{10}/\varepsilon_1)^2(f_{10}/\varepsilon_1) + 3(f_{10}/\varepsilon_1) + 3(f_{$ $3(f_{20}/\varepsilon_1^2)(f_{10}/\varepsilon_1)(f_{01}/\varepsilon_2) + 3(f_{11}/\varepsilon_1/\varepsilon_2)(f_{10}/\varepsilon_1)^2 - 3(f_{10}/\varepsilon_1)^3(f_{01}/\varepsilon_2)) + 6((f_{11}/\varepsilon_1/\varepsilon_2) + 6((f_{11}/\varepsilon_1/\varepsilon_2))) + 6((f_{11}/\varepsilon_1/\varepsilon_2)) + 6$ $(f_{12}/\varepsilon_1/\varepsilon_2^2) - 2(f_{11}/\varepsilon_1/\varepsilon_2)(f_{01}/\varepsilon_2) + (f_{10}/\varepsilon_1)(f_{01}/\varepsilon_2)^2 + (f_{21}/\varepsilon_1^2/\varepsilon_2) + (f_{22}/\varepsilon_1^2/\varepsilon_2^2) - (f_{22}/\varepsilon_1^2/\varepsilon_2) + (f_{22}/\varepsilon_2) + (f_{22}/\varepsilon_$ $2(f_{21}/\varepsilon_1^2/\varepsilon_2)(f_{01}/\varepsilon_2) + (f_{20}/\varepsilon_1^2)(f_{01}/\varepsilon_2)^2 - 2(f_{11}/\varepsilon_1/\varepsilon_2)(f_{10}/\varepsilon_1) - 2(f_{12}/\varepsilon_1/\varepsilon_2^2)(f_{10}/\varepsilon_1) + 2(f_{12}/\varepsilon_1/\varepsilon_2)(f_{10}/\varepsilon_1) + 2(f_{12}/\varepsilon_1)(f_{10}/\varepsilon_1) + 2(f_{12}/\varepsilon_1)(f_{10}/\varepsilon_1) + 2(f_{12}/\varepsilon_1)(f_{10}/\varepsilon_1) + 2(f_{12}/\varepsilon_1)(f_{10}/\varepsilon_1) + 2(f_{12}/\varepsilon_1)(f_{10}/\varepsilon_1) + 2(f_{10}/\varepsilon_1)(f_{10}/\varepsilon_1) + 2(f_{10}/\varepsilon_1)(f_{10}/\varepsilon_1) + 2(f_{10}/\varepsilon_1)(f_{10}/$ $4(f_{11}/\varepsilon_1/\varepsilon_2)(f_{10}/\varepsilon_1)(f_{01}/\varepsilon_2) - 3(f_{10}/\varepsilon_1)^2(f_{01}/\varepsilon_2)^2 + (f_{10}/\varepsilon_1)^2(f_{01}/\varepsilon_2) + (f_{02}/\varepsilon_2^2)(f_{10}/\varepsilon_1)^2) - (f_{01}/\varepsilon_2)^2 + (f_$ $4((f_{11}/\varepsilon_1/\varepsilon_2)+3(f_{12}/\varepsilon_1/\varepsilon_2^2)+(f_{13}/\varepsilon_1/\varepsilon_2^3)-3(f_{11}/\varepsilon_1/\varepsilon_2)(f_{01}/\varepsilon_2)-3(f_{12}/\varepsilon_1/\varepsilon_2^2)(f_{01}/\varepsilon_2)+$ $3(f_{11}/\varepsilon_1/\varepsilon_2)(f_{01}/\varepsilon_2)^2 - 3(f_{10}/\varepsilon_1)(f_{01}/\varepsilon_2)^3 - (f_{10}/\varepsilon_1)(f_{01}/\varepsilon_2) - 3(f_{02}/\varepsilon_2^2)(f_{10}/\varepsilon_1) - 3(f_{01}/\varepsilon_2)^2 - 3(f_{01}/\varepsilon_2)^2$ $(f_{03}/\varepsilon_2^3)(f_{10}/\varepsilon_1) + 3(f_{10}/\varepsilon_1)(f_{01}/\varepsilon_2)^2 + 3(f_{02}/\varepsilon_2^2)(f_{10}/\varepsilon_1)(f_{01}/\varepsilon_2)) + ((f_{01}/\varepsilon_2) + 3(f_{01}/\varepsilon_2)^2)(f_{01}/\varepsilon_2) + 3(f_{01}/\varepsilon_2)^2 + 3(f_{01}/\varepsilon_2)(f_{01}/\varepsilon_2) + 3(f_{01}/\varepsilon_2)(f_{01}/\varepsilon_2) + 3(f_{01}/\varepsilon_2)(f_{01}/\varepsilon_2) + 3(f_{01}/\varepsilon_2)(f_{01}/\varepsilon_2) + 3(f_{01}/\varepsilon_2)(f_{01}/\varepsilon_2)(f_{01}/\varepsilon_2) + 3(f_{01}/\varepsilon_2)(f_{01}/\varepsilon_2)(f_{01}/\varepsilon_2) + 3(f_{01}/\varepsilon_2)(f_{01}/\varepsilon_2)(f_{01}/\varepsilon_2)(f_{01}/\varepsilon_2) + 3(f_{01}/\varepsilon_2)(f_{01}/\varepsilon_2)(f_{01}/\varepsilon_2)(f_{01}/\varepsilon_2)(f_{01}/\varepsilon_2)) + 3(f_{01}/\varepsilon_2)(f_{01}/\varepsilon_2)(f_{01}/\varepsilon_2)(f_{01}/\varepsilon_2)) + 3(f_{01}/\varepsilon_2)(f_{01}/\varepsilon_2)(f_{01}/\varepsilon_2)) + 3(f_{01}/\varepsilon_2)(f_{01}/\varepsilon_2)(f_{01}/\varepsilon_2)) + 3(f_{01}/\varepsilon_2)(f_{01}/\varepsilon_2)(f_{01}/\varepsilon_2)) + 3(f_{01}/\varepsilon_2)(f_{01}/\varepsilon_2)(f_{01}/\varepsilon_2)(f_{01}/\varepsilon_2)) + 3(f_{01}/\varepsilon_2)(f_{01}/\varepsilon_2)(f_{01}/\varepsilon_2)(f_{01}/\varepsilon_2))$ $\begin{array}{l} (f_{03}/\varepsilon_{2}^{2}) + 6(f_{03}/\varepsilon_{2}^{3}) + (f_{04}/\varepsilon_{2}^{4}) - 4(f_{01}/\varepsilon_{2})^{2} - 12(f_{02}/\varepsilon_{2}^{2})(f_{01}/\varepsilon_{2}) - 4(f_{03}/\varepsilon_{2}^{3})(f_{01}/\varepsilon_{2}) + \\ 6(f_{01}/\varepsilon_{2})^{3} + 6(f_{02}/\varepsilon_{2}^{2})(f_{01}/\varepsilon_{2})^{2} - 3(f_{01}/\varepsilon_{2})^{4})) - 3(((f_{10}/\varepsilon_{1}) + (f_{20}/\varepsilon_{1}^{2}) - (f_{10}/\varepsilon_{1})^{2}) - \\ \end{array}$ $2((f_{11}/\varepsilon_1/\varepsilon_2) - (f_{10}/\varepsilon_1)(f_{01}/\varepsilon_2)) + ((f_{01}/\varepsilon_2) + (f_{02}/\varepsilon_2^2) - (f_{01}/\varepsilon_2)^2))^2$

$$F_{ik} \equiv \left\langle rac{N_1!}{(N_1-i)!} rac{N_2!}{(N_2-k)!}
ight
angle$$
 $f_{ik} \equiv \left\langle rac{n_1!}{(n_1-i)!} rac{n_2!}{(n_2-k)!}
ight
angle$

C₄/C₂ for critical point search

STAR Collaboration, arXiv:2001.02852, submitted to NP

- $\sqrt{\kappa\sigma^2(C_4/C_2)}$ shows a non-monotonic behaviour. The trend is consistent with the theoretical calculation.
 - Enhancement at low beam energies cannot be explained by baryon number conservation.

T. Nonaka, TCHoU member meeting 2020

11

C₄/C₂ for critical point search

 $\sqrt{\kappa\sigma^2 (C_4/C_2)}$ shows a non-monotonic

C₄/C₂ for critical point search

STAR Collaboration, arXiv:2001.02852, submitted to NP

 $\sqrt{\kappa\sigma^2(C_4/C_2)}$ shows a non-monotonic

Embedding simulation

- ✓ First results on detector efficiency distributions, reported in QM2018.
- ✓ Efficiencies follow betabinomial distribution.
- ✓ How much are final results affected?

Correction methods

✓ Unfolding

Moment expansion method

Results

STAR Collaboration, arXiv:2001.02852, submitted to NP

Results are consistent with those from **binomial efficiency correction!**

C₆/C₂ for crossover search

 \checkmark There isn't yet any direct experimental evidence for the smooth crossover at $\mu_{\rm B} \sim 0$. \checkmark C₆/C₂ < 0 is predicted at $\sqrt{s_{NN}} > 60$ GeV. \checkmark High-statistics data sets at $\sqrt{s_{NN}} = 54.4$ and 200 GeV are analyzed to look for the experimental signature of crossover transition.

Positive sign is predicted in $\sqrt{s_{NN}}$ <60 GeV

C.Schmidt, Prog. Theor. Phys. Suppl. 186, 563–566 (2010) Cheng et al, Phys. Rev. D 79, 074505 (2009) Friman et al, Eur. Phys. J. C (2011) 71:1694 χ_6^Q/χ_2^Q $\chi_4^{\rm B}/\chi_2^{\rm B}$ $\chi_6^{\rm B}/\chi_2^{\rm B}$ $\chi_4^{\rm Q}/\chi_2^{\rm Q}$ Freeze-out conditions HRG ~ 2 ~ 10 QCD: $T^{\rm freeze}/T_{pc} \lesssim 0.9$ $\gtrsim 1$ $\gtrsim 1$ ~ 10 ~ 2 QCD: $T^{\text{freeze}}/T_{pc} \simeq 1$ ~ 0.5 $<\!0$ <0 ~ 1 **Predicted scenario for this measurement** 1.2

Results

T. Nonaka, QM2019

200 GeV data taken in 2010 and 2011 54.4 GeV data taken in 2017

C₆/C₂<0 at 200 GeV central collisions could be an experimental indication of smooth crossover at small μ_B .

Comparison with LQCD

Bazavov et al., Phys. Rev. D 101,074502 (2020)

✓ Consistent with LQCD for 3rd and 4th net-proton(baryon) fluctuations

Comparison with LQCD

Bazavov et al., Phys. Rev. D 101,074502 (2020)

Acceptance dependence

✓ Which acceptance should be compared with LQCD calculations?

\checkmark Fluctuations should have minimum/maximum somewhere in acceptance size.

Acceptance dependence at 200 GeV

✓ Wide acceptance is crucial for fluctuation measurements!

Future Plan

2019-2021 : BES-II at RHIC

- ✓ Need to shrink the errors at low energies. ✓ BES-II has started this year.
- Map the QCD phase diagram $200 < \mu_B < 420$ \checkmark MeV

√S _{NN} (GeV)	Events (10 ⁶)	BES-II / BES-I	Weeks	μ _Β (MeV)	T (N
200	350	2010		25	166
62.4	67	2010		73	165
54.4	1200	2017			
39	39	2010		112	164
27	70	2011		156	162
19.6	400 / 36	2019-21 / 2011	3	206	160
14.5	300 / 20	2019-21 / 2014	2.5	264	156
11.5	230 / 12	2019-21 / 2010	5	315	152
9.2	160 / 0.3	2019-21 / 2008	9.5	355	140
7.7	100 / 4	2019-21 / 2010	14	420	140

Beyond BES-II

Statistical uncertainties will be dramatically reduced.

Can we measure a possible "peak" structure?

M.A. Stephanov, PRL107, 052301 (2011)

FXT@STAR

Target design: Gold foil 1/4 mm Thick (1%) ~1 cm High ~4 cm Wide ~2 cm below beam axis 200 cm from IR

Beyond BES-II

✓ Fixed-target experiment is also ongoing.

7				"Good"	
Beam Energy	$\sqrt{s_{NN}}$ (GeV)	$\mu_{\rm B} \ ({\rm MeV})$	Run Time	Number Events	
(GeV/nucleon)				requested /collecte	d
9.8	19.6	205	4.5 weeks	400M 582N	n
7.3	14.5	260	5.5 weeks	300M 324N	Л
5.75	11.5	315	9.5 weeks	230M	
4.55	9.1	370	9.5 weeks	160M	
3.85	7.7	420	12 weeks	100M	
31.2	7.7 (FXT)	420	2 days	100M 51 M	1
19.5	6.2 (FXT)	487	2 days	100M	
13.5	5.2 (FXT)	541	2 days	100M	
9.8	4.5 (FXT)	589	2 days	100M	
7.3	3.9 (FXT)	633	2 days	100M 53N	1
5.75	3.5 (FXT)	666	2 days	100M	
 4.55	3.2 (FXT)	699	2 days	100M 201M	n
3.85	3.0 (FXT)	721	2 days	100M 3.7N	I+300M (run18
	, /	1	-		

Beyond BES-II

- Higher-order fluctuations of net-particle distributions to search for the QCD phase structure
- \cdot Non-monotonic beam energy dependence of C_4/C_2
- Negative value of C_6/C_2 at $\sqrt{s_{NN}} = 200$ GeV central collisions
- Future FXT experiments at $\sqrt{s_{\text{NN}}} < 10$ GeV with higher beam intensity

Thank you for your attention