Development of NbTiN-AI MKID camera for the Nobeyama 45-m telescope

T. Nitta

University of Tsukuba

Contents

- ✤ Scientific Motivation
- * Microwave Kinetic Inductance Detector (MKID)
- * MKID Camera for the Nobeyama 45-m telescope
- ★ Results of Lab Measurements
- ★ Future Development
- ★ Summary

Survey of Distant Galaxies

★ Distant Galaxy Survey

- distant galaxy is important source to understand the galaxy evolution
 - Optical : absorbed by dust
 - mm-wave to THz : dust emission
- multi-band observation
 - redshift can be determined from SED

★ Star Formation History

- distant galaxy is obscured by dust
- wide-filed mm & submm continuum camera is important to survey galaxies

Wide-Field Observations

\star Multi-pixel camera for wide-field observations

ALMA : high-angular resolution interferometer

Fig. 4 A schematic illustration of the 10 m THz → follow-up observations of galaxies detected by the camera

telescope

- To observe a lot of distant galaxies,
 - camera development for wide-field observation
- good observation site for astronomical observations are important

Camera Development

* 100-GHz band Camera

- Camera will be installed on the Nobeyama 45m telescope
- Collaboration with National Astronomical Observatory of Japan
- free-free emission is dominant at the 100-GHz continuum
 - good tracer of the massive star forming region (HII region)

Observation Frequency	100-GHz band(90 – 110 GHz)
Field-of-view	\sim 3 arcmin
Detector	Microwave Kinetic Inductance Detector
No. of pixels	109 pixels
Bath temperature	< 200 mK

* THz band Camera (Future Plan)

- Our group is planning to construct the Ideg. FoV 10 m telescope at the Antarctica plateau.
- Target bands : 400 / 850 / 1300 GHz

MKID is one of the important technology for realizing wide-field camera

Microwave Kinetic Inductance Detector (MKID)

* Operation Principle

- Superconducting resonators operated in the microwave range
- Incident photons break Cooper-pair
 - → Kinetic Inductance is changed
 - → Resonance frequency of MKID is also changed
- ex) AI MKID : > 85 GHz photons can be observed Gold : Superconductor(AI)

* Advantage of MKID

- High-detector yield is expected because the MKID fabrication process is relatively simple
- Intrinsic frequency multiplexing capability \rightarrow ~1000 pixels can be measured with one LNA

Test Observations

Yates et al., 2011

* <u>Commissioning in 2018 season</u>

- Optics, detector yield and stability satisfy a requirement
- Measured sensitivity was one order lower than the target sensitivity.

- * Improvement of camera sensitivity
 - I. Low optical efficiency of MKID array
 - All AI MKID (gap E of AI : ~85 GHz)
 - Loss at GND & antenna (= low efficiency)
 - NbTiN-AI MKID (gap E of NbTiN : \sim I.I THz)
 - NbTiN GND and Al signal line
 - 2. Surface reflection of Si lenses
 - high refractive index causes reflections of ~30% at lens surface

Focal Plane Array

*100-GHz band MKID Camera

- Double-slot antenna & Si lens array
- Glass beads AR coating

*109 pixel NbTiN-Al MKID Array

- 200 nm NbTiN & 50 nm Al
- MKIDs are distributed over the entire
 3-inch Si wafer

< NbTiN-Al MKID >

fabricated by Y. Murayama

Anti-Reflective Structures

* <u>Subwavelength Structure (SWS)</u>

- Periodic structures in subwavelength scale
- · The structures act as antireflective (AR) layers
 - \rightarrow ex) optimized for Si : n = 1.84

* Fabrication Method

- Development of a dedicated three-axis dicing machine
 - (Oshima Prototype Engineering Co.)
 - \rightarrow Lens surface can be machined
- Various (Rectangular and V-shape) types of dicing blades were used

Lab Measurement

* Optical Measurement

- Detector Yield
- Frequency Response
- Beam Patterns
- * <u>Camera Sensitivity</u>
 - Optical Efficiency
 - Noise Equivalent Power

Measured with Makoto Nagai (NAOJ), Yosuke Murayama (D3), Ryuji Suzuki, Ryotaro Hikawa, Rikako Suzuki (M2) and many collaborators

Frequency Band Characteristic

Beam Characteristic

* Knife-Edge Measurement

Arnaud et al., 1971

- Scan thin blackbody (BB) source at a constant speed
 - 300 K and Li-N2 (77 K) BB sources were used to obtain the optical response
- Differential responses correspond to the beam shapes
 - Beam map (shape and position) can be obtained

• Beam waist size at the camera focal plane is almost the same as the simulation.

Future Plan

LeKID Array

* Lumped Element Kinetic Inductance Detector (LeKID)

Collaboration with Université Grenoble Alpes

Summary

* Scientific Motivation

- distant galaxy survey
 - wide-field survey is important to detect the unknown galaxies

* MKID Camera for the Nobeyama 45-m Telescope

- MKID is the superconducting resonator operated in the microwave range
- Camera development
 - 109 pixel array using lens-antenna coupled NbTiN-Al MKIDs
 - Results of beam pattern, yield and frequency response are as expected.
 - -This camera will be installed on the Nobeyama 45-m telescope in this Oct.
 - improvement of the multi-pixel readout system is needed

✤ Future Development

- Collaboration with Université Grenoble Alpes (LeKID development)
- \sim 20000 pixel camera is designed for the Antarctica 10 m telescope