

LGAD: low-gain avalanche detector

原、中村(KEK)、海野(KEK)、和田(D2)、大鳴(卒業)、植田(M1)

2015年度から開発を始めた 科研費B、新学術応募、日米科学協力

Tracking at the LHC-ATLAS

Run1: 2012 1x10³³ cm⁻²s⁻¹ (μ=6)

Run2: 2017 2.5x10³⁴ cm⁻²s⁻¹ (μ=66)

HL-LHC: 2027 ~ 7.5x10³⁴ cm⁻²s⁻¹ (μ=200)

☞ 空間以外の情報?

	Run1	Run2/Run3	HL-LHC
Pixel size	50x400 um (B-Layer, L1,L2) (5 <r<12cm)< td=""><td>50x250 um (IBL) 50x400 um (B,L1-L3) (3cm, 5<r<12cm)< td=""><td>50x50 um 5 layers (4<r<28cm)< td=""></r<28cm)<></td></r<12cm)<></td></r<12cm)<>	50x250 um (IBL) 50x400 um (B,L1-L3) (3cm, 5 <r<12cm)< td=""><td>50x50 um 5 layers (4<r<28cm)< td=""></r<28cm)<></td></r<12cm)<>	50x50 um 5 layers (4 <r<28cm)< td=""></r<28cm)<>
ASIC	FE-I3 (250nm)	FE-I4 (130nm)	ITKpix (65nm)

・ ピクセルサイズの微細化で対処する

• ASICのプロセス細分化で対応できた

R=3cm, 5~12cm

Radiation at hadron colliders

HL-LHC: $2027 \sim 7.5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ (µ=200) Run1: 2012 1x10³³ cm⁻²s⁻¹ (μ =3) Run2: 2017 2.5x10³⁴ cm⁻²s⁻¹ (μ=66) $\mathcal{L}=300 / \text{fb} \Rightarrow 4000 / \text{fb}$ >2x 10¹⁶ n_{eg}/cm² Radiation environment

LGAD IOW gain avalanche detector

LGAD@HL-LHC ATLAS

ALTIROC ASIC (65nm)

sensor

۲ [mm]

 $(\Delta t=10 \text{ps} \rightleftharpoons \Delta z=3 \text{mm})$

.

ATLAS HGTD: pad-type LGADs TOF \Rightarrow Vertex Point

<u>Future Circular Hadron Collider (FCC)</u> Add time information to each hit

- Reconstruct tracks using proper time differences
 Help reduce wrong hit combinations and effective in reducing the track reconstruction CPU
- \Rightarrow innovation in tracking

Fine segmentation/good timing are both required = 4-D Tracker

FCC (future circular collider)

ð/ Z .

3 TeV

2050年

500 GeV & 350 GeV

20/ab per exp. in 25 years

10/ab per exp. in 20 years

20/ab in 25 years

350-365 GeV

1.5 TeV

240 GeV

5 pixel layers in alternative layout

1 MeV neutron equivalent fluence¹⁶⁰⁰₁₄₀₀ for 30 ab⁻¹¹²⁰⁰

- 8×10¹⁷ /cm² @ r=2.5cm
- 1×10¹⁶ /cm² @ r=40 cm

Charged particle rate for $L=30 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

- 8 GHz/cm² @ r=2.5cm
- c.f. 0.8 GHz/cm² for HL-LHC

LGAD time resolution

2017 TB S. Wada

FNAL testbeam

This segmentation is not uniform and not appropriate for 4D tracker OK for HGTD/21

2017 K. Onaru

off n++

300

400

100V

150V

200V

250V

600

ADC

500

Boosting LGAD development

2018 LGAD workshop @ Tsukuba (Tokyo)

2019-2022 科研費(原)「高時間分解能を併せもつ高位置分解能4次元半導体検出器の実現」 2019-2020 新学術(中村)「医療機器 TOF-PET に用いる半導体検出器の開発」 2018,19,20 日米科学協力(中村)

✓ 細分化された一様性のあるLGAD

2018: TRENCH (S. Wada) 2019: AC-LGAD (K. Onaru)

✓ β線を用いた時間分解能測定

Fast amp. (A. Apresyan FNAL/日米)

LGAD segmentation by Trenches

TCAD simulation

Vertex2019, S. Wada et al.

Parameters tuned to reproduce response of an existing segmented LGAD

MPPC trenches (HPK hp)

HPK has good experiences of trenches for MPPCs (X-talk suppression) \Rightarrow HV range is different (V_{MPPC}<~60V)

13/21

LGAD segmentation in AC-LGAD

p+ concentrati

too high⇒ good isolation but low gain/signal pile-up

LGAD segmentation in AC-LGAD

Stable LGAD operation

RD50

Rad-hard LGAD

effective doping concentration

Radiation induced change of the

LGAD development for bio-science

2019-2020 新学術(中村)「医療機器 TOF-PET に用いる半導体検出器の開発」

18/21

Finely segmented LGADs as the 4-D detector

- Breakthrough device in future high intensity HEP experiments
- Unique photo sensor

New (first) HPK AC-LGAD samples have been fabricated Uniformity (timing, position) to be evaluated

In addition -

Improve radiation hardness Development of multi-channel readout amplifiers (w/ FNAL) Development of ASIC ... RD53