

COBAND実験のための遠赤外光源開発

(A far-infrared light source for COBAND experiment)

福井大学 <u>吉田拓生</u>, 古屋 岳, 鈴木健吾, 浅胡武志, 竹下勉, 若林 凛

中部大学 岡島茂樹, 中山和也

筑波大学 金 信弘, 武内勇司, 飯田 崇史, 浅野千紗, 高橋光太郎, 前川 群, 山根 綾太 近畿大学 加藤幸弘

他、COBAND実験メンバー

筑波大学 令和2年度 第1回宇宙史センター構成員会議 2020年6月15日

素粒子標準模型とニュートリノ

	第1世代 フレーバー 質量:小	第2世代 フレーバー ━━━→ 質量:中 ━━	第3世代 フレーバー → 質量:大		
クォーク 電荷 ² 3 ^e	U (アップ)	C (チャーム)	t (トップ)		
$(e:電気素量)$ $-\frac{1}{3}e$	d (ダウン)	S (ストレンジ)	b (ボトム)		
レプトン 0 (軽粒子) ^{電荷} - <i>e</i>	$ u_e ($ 電子ニュートリノ) $ e^{-}($ 電子)	$ \mathcal{V}_{\mu} {}^{(z_2 - z_2 - by)} $ $ \mu^{-(z_2 - by)} $	$oldsymbol{\mathcal{V}_{ au}}$ (タウニュートリノ) $oldsymbol{\mathcal{T}}^{-}$ (タウ)		
相互作用を媒介する粒子 (ゲージ粒子)	光子 γ グル (電磁相互作用) (強い	ーオン <i>g</i> W ⁺ 相互作用) (弱いれ	<i>₩⁻ Ζ</i> ⁰ ^{相互作用)}		
いろんな素粒子の 質量の源となる粒子	ヒッグス粒子 <i>H</i> ⁰				

〈ニュートリノの質量について、分かっていること(from Kamioka etc.)〉

- •3つの質量固有状態がある: v₁, v₂, v₃
- ・質量2乗差は測定されているが、個々の質量は不明

 $m_2^2 - m_1^2 = 7.37 \times 10^{-5} \text{eV}^2$, $m_3^2 - m_2^2 = 2.46 \times 10^{-3} \text{eV}^2$

・宇宙の密度揺らぎの観測から $m_1 + m_2 + m_3 < 230 \text{ meV}$

ニュートリノに質量があると…

質量の大きいニュートリノが光子(γ)を放出して崩壊し、 質量の小さいニュートリノになる…と理論で予言(未だ観測はされていない。)

しかし、ニュートリノの寿命τはとても長く、崩壊確率は極めて低い。 (観測で $\tau > 3 \times 10^{12}$ 年、理論ではモデルによって10¹³年(VL lepton) ~ 10¹⁷年(L-R symm.) ~ 10⁴³年(SM)) ⇒ 観測するには大量のニュートリノが必要 宇宙背景ニュートリノ崩壊光子(CvB)を使おう

V

COBAND実験共同研究 筑波大、JAXA、関学大、KEK、福井大、産総研、 型研、近畿大、米国フェルミ研、ソウル大、韓国IBS、他

宇宙背景ニュートリノ:

 ビッグバンによって宇宙が生まれたとき、光子や電子や クォークなどと共に大量に生成されたはず。
 今でも大量に宇宙を飛び交っている(約300個/cm³)と考えられているが、未発見。

色んな粒子が飛び交う宇宙 光子(3K放射):約 400個/cm³ :ビッグバンの38万年後に晴れわたる。 ニュートリノ:約300個/cm³ (理論の予測):ビッグバンの~1秒後に晴れわたる。』

検出器を宇宙へ (地上では空気中の水分が ν 崩壊光子を吸収してしまうため。) 宇宙背景ニュートリノ(CvB)崩壊光子のスペクトルとバックグラウンド

COBAND実験では、このような段差(波長50~90µm付近にできるであろう)を探索する。 どのような検出器を使うのか。

どのような光源を使うか。(この領域は「未開拓周波数帯」と言われているが…。)

予測されるニュートリノ崩壊光子の波長50~90 μ m (ν =3~6 THz、 E_{γ} =14~24 meV) に対して、少し余裕を見て、波長40~120 μ mの範囲の光源を用意することにした。

ニュートリノ崩壊光子検出器テスト用遠赤外光源

遠赤外分子レーザー装置(福井大学遠赤センター)を利用。

- CO₂レーザーを1次光源として、種々の気体分子(CH₃OH, CD₃OH, CH₃OD, …)を励起(分子振動・回転)させ、レーザー発振させる。
- ▶ 発振波長 :40µm~500µmの間 (E_r 2.5 meV~31 meV)の約70本 の単色発振線から任意の一つを選択できる。
- ▶ 連続波発振(出力:発振波長によって数mW~百mW)

元々、中部大学の岡島・中山研究室 で開発された手作りのレーザー

波長40~120 µmの範囲で、これまでに利用した発振線

(中部大学の岡島・中山研究室で確認されている27本中、14本)

CO ₂ レーザー(1次光源)			遠赤外分子レーザー					
発振線		波長λ(μm) (9~11μm帯)	出 カ (W)	媒体分子 ^(D:deutron)	波長λ (μm)	<i>E</i> γ (meV)	偏光 (対CO₂)	出力 (mW)
10R(18)		10.260	77	CD ₃ OH	41.4	30.0	\perp	11
9R(28)		9.230	71	CD ₃ OH	42.6	29.2		2.0
10R(18)		10.260	79	CD ₃ OH	43.7	28.4		9.4
9P(30)		9.639	66	CH₂DOH	44.0	28.2		2.8
9R(8)		9.342	67	CH ₃ OD	47.6	26.1		37
9R(34)		9.201	67	CD ₃ OH	52.9	23.5	\perp	9.2
9R(8)		9.342	73	CH ₃ OD	57.2	21.7	\perp	72
9P(34)		9.676	69	CH ₃ OH	70.5	17.6	\perp	23
9R(8)		9.342	71	CH ₃ OH	77.3	16.1		2.8
9R(8)		9.342	71	CH ₃ OH	86.2	14.4		-
10R(16)		10.274	77	CD ₃ OH	86.4	14.4		6.8
9R(10)		9.329	41	CH ₃ OH	96.5	12.9		33
9P(30)		9.639	65	CH ₃ OD	103.1	12.0	\perp	22
9P(36)		9.695	59	CH₃OH	118.8	10.5	Ţ	75

波長 9~10 μm帯の約90本の発振線から 共振器の一端の回折格子で1本だけ選択 (格子:水平方向、偏光:鉛直方向)------

目標の波長領域 40~120 µm をカバー

遠赤外分子レーザー、運転の手順

- 1.1次光源 CO₂レーザー
 - ・波長 9~10 µm帯の94本の発振線から1本を選択 (共振器の一端の回折格子を用いて)
 - ・共振器長を微調整(半波長λ_{CO2}/2の整数倍に)

- 2. 分子レーザー
 - ・分子の種類(CH₃OH, CH₃OD, CD₃OH, …)を1つ選択 ・共振器長を微調整(半波長λ/2の整数倍に)

ロケットによる観測に向けて、この遠赤外光源で取り組んでいる課題

JAXA観測用ロケットS-520

縦、横、斜めに設置可。

ニュートリノ崩壊光子検出器(望遠鏡)中の集光・分光用光学系(案)

光学設計・評価用プログラムCODE Vによるシミュレーション

by 筑波大 飯田、関学大 松浦研

この光学系に要求されるスペック

ブレーズド回折格子

- ▶ 波長範囲: 40 µm~80 µmを50ピクセルで分光 (波長分解能 0.8µm、2%以下)
- 1ピクセルのサイズ:400 µm以下
- 回折角βの範囲⊿β:8°程度
 (16°は超えない)

14

ブレーズ角θ_Bは、回折角βには直接関係しないが、回折効率に関係してくる。 波長40 μm~80 μmの範囲で、1次回折光が強く、他の回折光(0次、2次…)が弱くなるよう設計 (回折格子設計・解析用シミュレーター Diffract MOD 使用)

写真は福井大学の先端科学技術育成センター(工場)での試作品。 性能評価実験では、筑波大の飯田さんが専門業者に依頼して、作製してもらった同型の回折格子を使用。

回折格子の回折角、回折効率の測定用光学系の設計

凹面鏡を用いて回折格子付近でほぼ平行ビームを実現(ガウスビームは完全な平行ビームにはできない。)

回折効率の測定

筑波大の回折格子(アルミ)で、0次光、1次光、2次光の強度の内訳(相対回折効率)を測定、 Diffract MODによるシミュレーション(曲線)と比較(筑波大・前川)

<u>偏光:回折格子の溝に対して⊥、TM</u>

- ➤ ニュートリノ崩壊光子検出器(望遠鏡)を完成させ、 ロケットで宇宙へ
 - ・まずは、開発の進んでいるNb/Al-STJアレイ&回折格子併用
 で、3分間観測。
 - v₃の寿命τ = 10¹³~10¹⁴年の領域を探る。
 - JAXAの規定:
 ロケット打ち上げ申請は随時受け付け。
 しかし、打ち上げは、検出器が完成してから2年後。
- ▶ 将来的には人工衛星に搭載して長期間連続観測
 - ・Hf-STJを完成させ、回折格子なしで視野角を広げて観測 ・ν₃の寿命τ = 10¹⁴~10¹⁷年の領域を探る。

これ以下、時間の都合で省略したスライド。

測定された電流変化: 100 nA
 検出効率: 100 nA/30 µm = 0.3%
 検出効率の向上を図るべし → STJの表面に反射防止膜
 ノイズも低減させるべし → SOI-STJ (STJとアンプを一体化)

パルス時間幅を短くするための光学系の設計

目標:パルス時間幅 < STJ検出器の応答速度・

方針:

▶ 回転ミラーを用いる場合は、現有品を用いる。

回転ミラー(中部大 岡島先生提供) 平面鏡、39mm×42mm×8枚 ω=353 rad/s(56回転/s)

- ▶ 回転ミラー以外に、オプティカル・チョッパーなども 試してみる。
- ▶ 光学部品(凹面鏡、凸面鏡etc.)は市販品から選択。
- ▶ レーザービームの空気中の伝播距離を4 m以内 に抑える。 (空気中の水分による吸収の影響を抑えるため)

1

Ω

3

4

24

2

距離*z* (m)

