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テンソル繰り込み群(TRG)

例としてNサイトを持つ2Dイジングモデルを考える

モデルの詳細は初期テンソルのみに依存
計算アルゴリズムはモデルと独立

勿論，サイト数Nが大きくなれば添字の縮約の完全実行は不可能
⇒どうやって分配関数を評価するか？

H =
∑

〈i,j〉
sisj si ± 1

Z =
∑

{Si}
exp (−βH)

=
2∑

i,j,k,l,···=1
Ti,m,n,lTs,t,i,jTr,j,k,qTk,l,o,p · · ·

Z =
∫
DU det D({U}) e−Sg({U})

〈O〉 =
∫
DU O({U,D−1}) det D({U}) e−Sg({U})

P =
1

Z
det D({U}) e−Sg({U})

Z =
∑

i,j,k,...
e−S(i,j,k,...) =

∑

i,j,k,...
TijklTimnoTjpqrTksuvTlwxy · · · .

ZQCD(T, µ) =
∫
DUe−Sg[U ] det D(µ; U)

〈O〉 =
〈OeiNfθ〉||
〈eiNfθ〉||

〈O〉 =
〈Oeiθ〉||
〈eiθ〉||

Z||(T, µ) =
∫
DUe−Sg[U ]| det D(µ; U)|

U = 1 − 1

3

〈X4〉
〈X2〉2
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ハミルトニアン

分配関数

テンソルネットワーク表現

χ(L) =
1

L2

∂2 ln Z

∂(1/2κ)2

Z =
∫
DψDψ̄DU e−ψ̄D[U ]ψ−Sg[U ]

Ti,j,k,l "
Dcut∑

m=1
U(i,j),mσmVm,(k,l)

H =
∑

〈i,j〉
sisj si ± 1

Z =
∑

{si}
exp (−βH)

=
2∑

α,β,γ,δ,···=1
Tα,λ,ρ,δTσ,κ,α,βTµ,β,γ,τTγ,δ,ν,χ · · ·

Z =
∫
DU det D({U}) e−Sg({U})

〈O〉 =
∫
DU O({U,D−1}) det D({U}) e−Sg({U})

P =
1

Z
det D({U}) e−Sg({U})

Z =
∑

i,j,k,...
e−S(i,j,k,...) =

∑

i,j,k,...
TijklTimnoTjpqrTksuvTlwxy · · · .

ZQCD(T, µ) =
∫
DUe−Sg[U ] det D(µ; U)

〈O〉 =
〈OeiNfθ〉||
〈eiNfθ〉||

1

Levin-Nave 
PRL99(2007)120601
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TRGアルゴリズムの概略
1. サイト上のテンソルTに対する特異値分解
2. 古い添字の縮約 (疎視化)
3. 手続きの反復

大きな特異値を持つ
部分空間のみを残す

サイト数は半減

新しい添字を
持つテンソル



2Dイジングモデルを使ったテスト
アルゴリズムの要諦は特異値分解を用いた低ランク近似

誤差をコントロールするパラメーターはDcut

転移点近傍での自由エネルギーの厳密解からの相対誤差, 
格子サイズ=230〜50, Dcut=24

Xie et al. 
PRB86(2012)045139

Onsagerの厳密解との比較
相対誤差：≤10−6

XIE, CHEN, QIN, ZHU, YANG, AND XIANG PHYSICAL REVIEW B 86, 045139 (2012)

FIG. 4. (Color online) Comparison of the relative errors of free
energy with respect to the exact results for the 2D Ising model
obtained by various methods with D = 24. The critical temperature
Tc = 2/ ln(1 +

√
2).

is already less than 10−7 even at the critical temperature,
much more accurate than the TRG result.7,8 The HOSRG also
performs better than the SRG. But the difference in the results
obtained by these two methods is relatively small around the
critical point. The HOTRG is less accurate than the two SRG
methods, but it is computationally economic. The difference
between TRG/SRG and HOTRG/HOSRG lies mainly in the
basis truncation scheme. The former is based on the SVD,
while the latter is based on the HOSVD. The above comparison
indicates that the HOSVD scheme works better.

III. THREE-DIMENSIONAL SYSTEMS

The above HOTRG and HOSRG methods can be readily
extended to three dimensions. This is an advantage of the
coarse-graining scheme proposed here. On the cubic lattice, a
full cycle of lattice contraction needs to be done in three steps,
along the x axis, y axis, and z axis, respectively. At each step,
two neighboring tensors will be combined to form a single
coarse-grained tensor and the lattice size is reduced by a factor
of 2.

As an example, Fig. 5 shows how the tensors are contracted
along the z axis. The HOSVD of the coarse-grained local
tensor [Fig. 5(b)] can be similarly done as for the 2D case. But
the local tensor now has six bond indices and a HOSVD for a
higher-order tensor should be done. Moreover, the basis spaces
for both the x-axis and y-axis bonds need to be renormalized.
Thus we should determine from the core tensor and the unitary
matrices of M (n) not only the transformation matrix for the
x-direction bonds U (n), but also the transformation matrix
for the y-direction bonds V (n). After that the dimensions for
both x-axis and y-axis bonds are truncated and the local
tensor is updated using U (n) and V (n). The contraction and
renormalization of tensors along the other two directions can
be similarly done. This three-step iteration can then be repeated
until the results are converged.

After the above HOTRG iteration, one can also do a
backward iteration to evaluate the environment tensors and
carry out the HOSRG calculation in three dimensions. A
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FIG. 5. (Color online) (a) A HOTRG coarse-graining step along
the z axis on the cubic lattice. (b) Steps of contraction and
renormalization of two local tensors.

graphical representation for iteratively determining the envi-
ronment tensor in this backward iteration is shown in Fig. 6.
A series of forward-backward iterations is then performed
to take into account the second renormalization effect of the
environment to the coarse-grained tensors. In the subsequent
forward iterations, we evaluate and diagonalize the bond
density matrix (see Fig. 7) and update the coarse-grained
tensors. The environment tensors are evaluated again in the
backward iteration.

In the 3D calculation, the computational time scales with
D11 and the memory scales with D6. This cost in the
computational resource is significantly smaller than in other
3D numerical RG methods.11–17,19 We have studied the 3D
Ising model using the HOTRG for D up to 16.

The temperature dependence of the internal energy U and
the specific heat C for the 3D Ising model obtained by the
HOTRG with D = 14 is shown in Fig. 8 and compared with
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FIG. 6. (Color online) Graphical representation for the deter-
mination of the environment tensor E

(n)
mnjiuk from E
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lrf bud in three

dimensions.

045139-4

Ti,j,k,l ⇒ T{j,k},{l,i} =
(
UΛV t

)

{j,k},{l,i}
=

∑

m

(
U
√

Λ
)

{j,k},m

(
V
√

Λ
)

{l,i},m
=

∑

m
(S1){j,k},m (S3){l,i},m

Ti,j,k,l ⇒ T{k,l},{i,j} =
(
UΛV t

)

{k,l},{i,j}
=

∑

m

(
U
√

Λ
)

{k,l},m

(
V
√

Λ
)

{i,j},m
=

∑

m
(S2){k,l},m (S4){i,j},m

Ti,j,k,l #
Dcut∑

m=1
U{k,l},mΛmV{i,j},m

Scont =
∫

d2x
{
|∂ρφ|2 + (m2 − µ2)|φ|2 + µ(φ∗∂2φ − ∂2φ

∗φ) + λ|φ|4
}

Z =
∫
Dφ exp(−S)

Z(original) =
∫
Dφ1Dφ2 exp(−S)

S =
∑

n



(4 + m2)|φn|2 + λ|φn|4 −
2∑

ρ=1

(
eµδρ,2φ∗

nφn+ρ̂ + e−µδρ,2φ∗
n+ρ̂φn

)




φn = (φn,1,φn,2) → (rn cos θn, rn sin θn)

1
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特異値分解(Singular Value Decomposition)

任意のm×n実行列Aは A=UΣVT と分解できる

U: m×mの直交行列

V: n×nの直交行列

Σ=diag(σ1, σ2, σ3, σ4, …, σn)     (σ1≥σ2≥ σ3≥σ4≥…≥σn≥0)

σ1, σ2, σ3, σ4,・・・,σnはAの特異値で非負

Uの各列u1, u2, …, unとVの各列v1, v2, …, vnを用いたランク1の行列和に分解, 

A=σ1u1v1T+σ2u2v2T+…+σnunvnT

σiuivi
T=

ui

σi vi
T

××
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行列の近似

行列Aの近似

A=σ1u1v1T+σ2u2v2T+…+σkukvkT+…+σnunvnT

Ak=σ1u1v1T+σ2u2v2T+…+σkukvkT (行列k個の和で近似)

近似誤差は||A-Ak||Fで定義

||A-Ak||F=(σk+1
2+σk+2

2+…+σn
2)1/2

ただし, ||A||F=(Tr(ATA))1/2=(ΣiΣj aij2)1/2

画像圧縮などに利用
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特異値分解(SVD)を用いた画像圧縮

J. Demmel: Applied Numerical Linear Algebra, SIAM 1997 

200x320ピクセルの画像データ⇒ 200x320実行列A

行列を特異値分解

A=σ1u1v1
T+σ2u2v2

T+…+σnunvn
T (n=200)

サンプル画像(200x320ピクセル) 特異値の分布(大→小)
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復元画像の品質

Ak=σ1u1v1
T+σ2u2v2

T+…+σkukvk
T (k≪200)

J. Demmel: Applied Numerical Linear Algebra, SIAM 1997 



モンテカルロ法との相違点

・ モンテカルロ法における符号問題および複素作用問題がない

・ LDのシステムサイズに対する計算コスト∝D×log(L)
・ グラスマン数を直接扱うことが可能
・ 分配関数Zそのものを計算可能

素粒子物理：軽いクォークのダイナミクス，有限密度QCDの相構造解析
Strong CP問題などの研究に応用可能

物質科学：強相関量子系，金属絶縁体転移，高温超伝導などの
研究に応用可能 (ハバードモデル)

Z =
∫
Dφ exp(−SRe[φ] + iSIm[φ])

Z =



∏

x,µ

∫ π

−π

dϕx,µ

2π




∏

x
T (ϕx,1,ϕx+1̂,2,ϕx+2̂,1,ϕx,2)

T (ϕx,1,ϕx+1̂,2,ϕx+2̂,1,ϕx,2) = exp


β cos px + i
θ

2π
qx





Z =



∏

x,µ

∫ π

−π

dϕx,µ

2π



 exp (−S)

Ti,j,k,l ⇒ T{j,k},{l,i} =
(
UΛV t

)

{j,k},{l,i}
=

∑

m

(
U
√

Λ
)

{j,k},m

(
V
√

Λ
)

{l,i},m
=

∑

m
(S1){j,k},m (S3){l,i},m

Ti,j,k,l ⇒ T{k,l},{i,j} =
(
UΛV t

)

{k,l},{i,j}
=

∑

m

(
U
√

Λ
)

{k,l},m

(
V
√

Λ
)

{i,j},m
=

∑

m
(S2){k,l},m (S4){i,j},m

T (new)
o,n,m,p =

∑

i,j,k,l
(S4){l,k},o (S3){k,j},n (S2){j,i},m (S1){i,l},p

Ti,j,k,l $
Dcut∑

m=1
U{k,l},mΛmV{i,j},m

Scont =
∫

d2x
{
|∂ρφ|2 + (m2 − µ2)|φ|2 + µ(φ∗∂2φ − ∂2φ

∗φ) + λ|φ|4
}

Z =
∫
Dφ exp(−S)

1

モンテカルロ法
確率的手法

テンソル繰り込み群
決定論的手法

コペルニクス的転換
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TRG法の素粒子物理への応用(1)

2次元モデル
CP(1)モデル：Kawauchi-Takeda, PRD93(2016)114503
実φ4理論：

Shimizu, Mod.Phys.Lett.A27(2012)1250035,
Kadoh-YK-Nakamura-Sakai-Takeda-Yoshimura, JHEP1905(2019)184

有限密度における複素φ4理論：
Kadoh-YK-Nakamura-Sakai-Takeda-Yoshimura, , JHEP2002(2020)161

θ項(トポロジカル項)を持つU(1)ゲージ理論：
YK-Yoshimura, JHEP2004(2020)089

Schwingerモデル(2次元QED), θ項(トポロジカル項)を持つSchwingerモデル：
Shimizu-YK, PRD90(2014)014508, PRD90(2014)074503,

PRD97(2018)034502 
有限密度におけるGross-Neveuモデル：

Takeda-Yoshimura, PTEP2015(2015)043B01
N=1 Wess-Zuminoモデル(超対称性理論)：

Kadoh-YK-Nakamura-Sakai-Takeda-Yoshimura, JHEP1803(2018)141

符号問題解決の検証，スカラー場・フェルミオン場・ゲージ場の計算手法開発
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TRG法の素粒子物理への応用(2)

3次元モデル
自由Wilsonフェルミオン：

Sakai-Takeda-Yoshimura, PTEP2017(2017)063B07, 
Yoshimura-YK-Nakamura-Takeda-Sakai, PRD97(2018)054511

有限温度におけるZ2 ゲージ理論：
YK-Yoshimura, JHEP1908(2019)023

4次元モデル
Isingモデル：

Akiyama-YK-Yamashita-Yoshimura, PRD100(2019)054510
有限密度における複素φ4理論：

Akiyama-Kadoh-YK-Yamashita-Yoshimura, JHEP2002(2020)161
有限密度におけるNambu−Jona-Lasinio(NJL)モデル：

Akiyama-YK-Yamashita-Yoshimura, arXiv:2009.11583

⇒研究の重心は2次元モデル・理論から4次元モデル・理論へ移行中



連続時空におけるNJLモデル

格子上における有限密度NJLモデル(Kogut-Susskindフェルミオン)

𝜇：化学ポテンシャル(密度をコントロール)
𝑚：フェルミオンの質量

𝑔!：4フェルミ相互作用の結合定数

𝑎：格子間隔

低温・高密度下におけるNJLモデルの相転移(1)
Akiyama+, arXiv:2009.11583

the partition function or the path-integral itself. In the thermodynamic limit the pressure

is directly related to the thermodynamic potential so that the equation of state can be

easily obtained with the TRG method.

In this paper we investigate the phase structure of the Nambu–Jona-Lasinio (NJL)

model [16, 17] at finite temperature T and chemical potential µ on the lattice developing

the Grassmann version of the ATRG algorithm. The Lagrangian of the NJL model in the

continuum is defined as follows:

L =  ̄(x)�⌫@⌫ (x)� g0
�
( ̄(x) (x))2 + ( ̄(x)i�5 (x))

2
 
, (1.1)

which has the U(1) chiral symmetry with  (x) ! ei↵�5 (x) and  ̄(x) !  ̄(x)ei↵�5 . This

is an e↵ective theory of QCD which describes the dynamical chiral symmetry breaking:

once the strength of the coupling constant g0 exceeds a certain critical value the system

generates a non-trivial vacuum with h ̄(x) (x)i 6= 0. The chiral phase structure of the

NJL model on the T -µ plane is discussed by some analytical methods, e.g., the mean-field

approximation (MFA) [18] and the functional renormalization group (FRG) [19]. Figure 1

shows a schematic view of the expected phase structure, whose characteristic feature is

the first-order chiral phase transition in the dense region at very low temperature [20].

This phase transition is our primary target to investigate, employing the chiral condensate

h ̄(x) (x)i as an order parameter. Since the chiral symmetry plays a crucial role in this

study, we use the Kogut–Susskind fermion to formulate the NJL model on the lattice.

The analysis of the phase structure with the TRG method would help us understand the

thermodynamic properties of dense QCD.

This paper is organized as follows. In Sec. 2 we explain the formulation of the lattice

NJL model with the Kogut–Susskind fermion and the algorithmic details of the Grassmann

ATRG (GATRG). Numerical results for the chiral condensate and the equation of state

are presented in Sec. 3. Section 4 is devoted to summary and outlook.

2 Formulation and numerical algorithm

2.1 NJL model on the lattice

We use the Kogut–Susskind fermion to formulate the NJL model on the lattice. Following

Refs. [21, 22], we define the model at finite chemical potential µ as

S =
1

2
a
3
X

n2⇤

4X

⌫=1

⌘⌫(n)
h
eµa�⌫,4�̄(n)�(n+ ⌫̂)� e�µa�⌫,4�̄(n+ ⌫̂)�(n)

i

+ma
4
X

n2⇤
�̄(n)�(n)� g0a

4
X

n2⇤

4X

⌫=1

�̄(n)�(n)�̄(n+ ⌫̂)�(n+ ⌫̂), (2.1)

where n = (n1, n2, n3, n4)(2 Z4) specifies a position in lattice ⇤, whose spacing is a. �(n)

and �̄(n) are Grassmann-valued fields without the Dirac structure. Since they describe

the Kogut–Susskind fermions, �(n) and �̄(n) are single-component Grassmann variables.
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NJLモデルはQCDのプロトタイプ

低温・高密度での一次相転移を検証することが重要

低温・高密度下におけるNJLモデルの相転移(2)
Akiyama+, arXiv:2009.11583

𝑇

𝜇

1st

2nd Critical end point

ത𝜓𝜓 ് 0 ത𝜓𝜓 ൌ 0

Figure 1. Schematic view of expected phase diagram of the NJL model on the T -µ plane. Solid
and broken curves represent the first- and second-order phase transitions, respectively. Closed circle
denotes the critical end point (CEP) where the first-order phase transition line terminates.

⌘⌫(n) is the staggered sign function defined by ⌘⌫(n) = (�1)n1+···+n⌫�1 with ⌘1(n) = 1.

The partition function is defined in the ordinal manner:

Z =

Z  Y

n2⇤
d�(n)d�̄(n)

!
e�S

. (2.2)

For vanishing mass m, Eq. (2.1) is invariant under the following continuous chiral trans-

formation:

�(n) ! ei↵✏(n)�(n), (2.3)

�̄(n) ! �̄(n)ei↵✏(n) (2.4)

with ↵ 2 R and ✏(n) = (�1)n1+n2+n3+n4 .

2.2 Tensor network representation

We introduce the tensor network representation for Eq. (2.2) in a similar way with Refs. [10,

11]. Hereafter, we set a = 1 for simplicity. Firstly, we expand the local Boltzmann weights

in the following manners to decompose the nearest-neighbor interactions:

exp


�eµ�⌫,4

2
⌘⌫(n)�̄(n)�(n+ ⌫̂)

�
=

1X

i⌫,1(n)=0

Z
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低温・高密度下におけるNJLモデルの相転移(3)
Akiyama+, arXiv:2009.11583

𝜇 ≈ 3.0付近での不連続性(トビ) ⇒一次相転移
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Figure 4. Chiral condensate at m = 0.01 and 0.02 on 10244 lattice as a function of µ with D = 55.
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Figure 5. Chiral condensate extrapolated in the chiral limit as a function of µ with D = 55 on
1284 and 10244 lattices.

with the impurity tensor, following the ideas in Refs. [15, 26]. This is also the case with the evaluation of

number density discussed below.

– 11 –

3.2 Chiral phase transition

We investigate the chiral phase transition employing the chiral condensate h�̄(n)�(n)i, as
an order parameter, which is defined by

h�̄(n)�(n)i = lim
m!0

lim
V!1

1

V

@

@m
lnZ, (3.2)

in the cold region. We calculate h�̄(n)�(n)i with the numerical derivative of thermodynamic

potential and the chiral extrapolation with the corresponding results at finite mass in the

thermodynamic limit6. In this study, the partial derivative in Eq. (3.2) is numerically

evaluated via

@

@m
lnZ ⇡ lnZ(m+�m)� lnZ(m)

�m
, (3.3)

with �m = 0.01. In Fig. 4 we plot the µ dependence of the chiral condensate at m = 0.01

and 0.02 on the L
4 = 10244 lattice. The signals show slight fluctuations as a function

of µ around the transition point. Away from the transition point, we have found little

response in h�̄(n)�(n)i to changes in mass. Figure 5 presents the results in the chiral limit

obtained by the chiral extrapolation with those at m = 0.01 and 0.02 on two volumes of

L
4 = 1284 and 10244. It is hard to find the di↵erence between the L = 128 and 1024 results.

This allows us to consider the L = 1024 result to be essentially in the thermodynamic

limit. We observe the discontinuity from a finite value to zero for the chiral condensate at

µc = 3.0625± 0.0625, which is a clear indication of the first-order phase transition.

3.3 Equation of state

Equation of state is a relation between the pressure and the particle number density. Here

we presents both results as a function of µ, respectively. In the thermodynamic limit, the

pressure P is directly obtained from the thermodynamic potential:

P =
lnZ

V
, (3.4)

where the vast homogeneous system is assumed. In Fig. 6 we plot the µ dependence of the

pressure at m = 0.01. We find a kink behavior at µc = 3.0625 ± 0.0625, where the chiral

condensate shows the discontinuity. Note that the m = 0.02 result shows little di↵erence

from the m = 0.01 one.

The particle number density is obtained by the numerical derivative of pressure in

terms of the chemical potential:

hn(µ)i = @P (µ)

@µ
⇡ P (µ+�µ)� P (µ)

�µ
. (3.5)

The µ dependence of hni is shown in Fig. 7. We observe an abrupt jump from hni = 0

to hni = 1 at µc = 2.9375 ± 0.0625. This is another indication of the first-order phase

transition. The small shift of µc compared to the chiral condensate case is attributed to

the definition of the numerical derivative in Eq. (3.5).

6It is also possible to evaluate the chiral condensate with the impurity tensor method [15, 26]. Since

Eq. (2.9) consists of eight types of tensor, however,we need to coarse-grain several kinds of tensor network
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カイラル相転移のオーダーパラメータ
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Figure 4. Chiral condensate at m = 0.01 and 0.02 on 10244 lattice as a function of µ with D = 55.
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with the impurity tensor, following the ideas in Refs. [15, 26]. This is also the case with the evaluation of

number density discussed below.
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低温・高密度下におけるNJLモデルの相転移(4)
Akiyama+, arXiv:2009.11583

𝜇 ≈ 3.0付近での不連続性(トビ) ⇒一次相転移

TRG法では状態方程式も容易に得られる

状態方程式：圧力と粒子数密度
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Figure 6. Pressure at m = 0.01 as a function of µ on 1284 and 10244 lattices.
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Figure 7. Particle number density at m = 0.01 as a function of µ on 1284 and 10244 lattices.

4 Summary and outlook

We have investigated the restoration of the chiral symmetry of the NJL model in the

dense region at very low temperature employing the Kogut–Susskind fermion action on

the extremely large lattice of V = 10244, which is essentially in the thermodynamic limit

at zero temperature. The first-order phase transition is clearly observed using the chiral
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4 Summary and outlook

We have investigated the restoration of the chiral symmetry of the NJL model in the

dense region at very low temperature employing the Kogut–Susskind fermion action on

the extremely large lattice of V = 10244, which is essentially in the thermodynamic limit

at zero temperature. The first-order phase transition is clearly observed using the chiral
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3.2 Chiral phase transition

We investigate the chiral phase transition employing the chiral condensate h�̄(n)�(n)i, as
an order parameter, which is defined by

h�̄(n)�(n)i = lim
m!0

lim
V!1

1

V

@

@m
lnZ, (3.2)

in the cold region. We calculate h�̄(n)�(n)i with the numerical derivative of thermodynamic

potential and the chiral extrapolation with the corresponding results at finite mass in the

thermodynamic limit6. In this study, the partial derivative in Eq. (3.2) is numerically

evaluated via

@

@m
lnZ ⇡ lnZ(m+�m)� lnZ(m)

�m
, (3.3)

with �m = 0.01. In Fig. 4 we plot the µ dependence of the chiral condensate at m = 0.01

and 0.02 on the L
4 = 10244 lattice. The signals show slight fluctuations as a function

of µ around the transition point. Away from the transition point, we have found little

response in h�̄(n)�(n)i to changes in mass. Figure 5 presents the results in the chiral limit

obtained by the chiral extrapolation with those at m = 0.01 and 0.02 on two volumes of

L
4 = 1284 and 10244. It is hard to find the di↵erence between the L = 128 and 1024 results.

This allows us to consider the L = 1024 result to be essentially in the thermodynamic

limit. We observe the discontinuity from a finite value to zero for the chiral condensate at

µc = 3.0625± 0.0625, which is a clear indication of the first-order phase transition.

3.3 Equation of state

Equation of state is a relation between the pressure and the particle number density. Here

we presents both results as a function of µ, respectively. In the thermodynamic limit, the

pressure P is directly obtained from the thermodynamic potential:

P =
lnZ

V
, (3.4)

where the vast homogeneous system is assumed. In Fig. 6 we plot the µ dependence of the

pressure at m = 0.01. We find a kink behavior at µc = 3.0625 ± 0.0625, where the chiral

condensate shows the discontinuity. Note that the m = 0.02 result shows little di↵erence

from the m = 0.01 one.

The particle number density is obtained by the numerical derivative of pressure in

terms of the chemical potential:

hn(µ)i = @P (µ)

@µ
⇡ P (µ+�µ)� P (µ)

�µ
. (3.5)

The µ dependence of hni is shown in Fig. 7. We observe an abrupt jump from hni = 0

to hni = 1 at µc = 2.9375 ± 0.0625. This is another indication of the first-order phase

transition. The small shift of µc compared to the chiral condensate case is attributed to

the definition of the numerical derivative in Eq. (3.5).

6It is also possible to evaluate the chiral condensate with the impurity tensor method [15, 26]. Since

Eq. (2.9) consists of eight types of tensor, however,we need to coarse-grain several kinds of tensor network
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in the cold region. We calculate h�̄(n)�(n)i with the numerical derivative of thermodynamic

potential and the chiral extrapolation with the corresponding results at finite mass in the

thermodynamic limit6. In this study, the partial derivative in Eq. (3.2) is numerically

evaluated via
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�m
, (3.3)

with �m = 0.01. In Fig. 4 we plot the µ dependence of the chiral condensate at m = 0.01

and 0.02 on the L
4 = 10244 lattice. The signals show slight fluctuations as a function

of µ around the transition point. Away from the transition point, we have found little
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obtained by the chiral extrapolation with those at m = 0.01 and 0.02 on two volumes of
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4 = 1284 and 10244. It is hard to find the di↵erence between the L = 128 and 1024 results.

This allows us to consider the L = 1024 result to be essentially in the thermodynamic

limit. We observe the discontinuity from a finite value to zero for the chiral condensate at

µc = 3.0625± 0.0625, which is a clear indication of the first-order phase transition.

3.3 Equation of state

Equation of state is a relation between the pressure and the particle number density. Here

we presents both results as a function of µ, respectively. In the thermodynamic limit, the

pressure P is directly obtained from the thermodynamic potential:

P =
lnZ

V
, (3.4)

where the vast homogeneous system is assumed. In Fig. 6 we plot the µ dependence of the

pressure at m = 0.01. We find a kink behavior at µc = 3.0625 ± 0.0625, where the chiral

condensate shows the discontinuity. Note that the m = 0.02 result shows little di↵erence

from the m = 0.01 one.

The particle number density is obtained by the numerical derivative of pressure in

terms of the chemical potential:

hn(µ)i = @P (µ)

@µ
⇡ P (µ+�µ)� P (µ)
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. (3.5)

The µ dependence of hni is shown in Fig. 7. We observe an abrupt jump from hni = 0

to hni = 1 at µc = 2.9375 ± 0.0625. This is another indication of the first-order phase

transition. The small shift of µc compared to the chiral condensate case is attributed to

the definition of the numerical derivative in Eq. (3.5).

6It is also possible to evaluate the chiral condensate with the impurity tensor method [15, 26]. Since

Eq. (2.9) consists of eight types of tensor, however,we need to coarse-grain several kinds of tensor network
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まとめ

・ モンテカルロ法における符号問題および複素作用問題がない

・ LDのシステムサイズに対する計算コスト∝D×log(L)
・ グラスマン数を直接扱うことが可能
・ 分配関数Zそのものを計算可能

素粒子物理：軽いクォークのダイナミクス，有限密度QCDの相構造解析

Strong CP問題などの研究に応用可能
物質科学：強相関量子系，金属絶縁体転移，高温超伝導などの

研究に応用可能 (ハバードモデル)

Z =
∫
Dφ exp(−SRe[φ] + iSIm[φ])

Z =



∏

x,µ

∫ π

−π

dϕx,µ

2π




∏

x
T (ϕx,1,ϕx+1̂,2,ϕx+2̂,1,ϕx,2)

T (ϕx,1,ϕx+1̂,2,ϕx+2̂,1,ϕx,2) = exp


β cos px + i
θ

2π
qx





Z =



∏

x,µ

∫ π

−π

dϕx,µ

2π



 exp (−S)

Ti,j,k,l ⇒ T{j,k},{l,i} =
(
UΛV t

)

{j,k},{l,i}
=

∑

m

(
U
√

Λ
)

{j,k},m

(
V
√

Λ
)

{l,i},m
=

∑

m
(S1){j,k},m (S3){l,i},m

Ti,j,k,l ⇒ T{k,l},{i,j} =
(
UΛV t

)

{k,l},{i,j}
=

∑

m

(
U
√

Λ
)

{k,l},m

(
V
√

Λ
)

{i,j},m
=

∑

m
(S2){k,l},m (S4){i,j},m

T (new)
o,n,m,p =

∑

i,j,k,l
(S4){l,k},o (S3){k,j},n (S2){j,i},m (S1){i,l},p

Ti,j,k,l $
Dcut∑

m=1
U{k,l},mΛmV{i,j},m

Scont =
∫

d2x
{
|∂ρφ|2 + (m2 − µ2)|φ|2 + µ(φ∗∂2φ − ∂2φ

∗φ) + λ|φ|4
}

Z =
∫
Dφ exp(−S)

1

現段階：

4次元モデル・理論の計算が可能になった
有限密度NJLモデルの解析に成功

⇒有限密度QCD・ハバードモデルの相構造解析


