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Introduction

MKID camera: A superconducting based on microwave kinetic inductance detectors to

observe 100 GHz bands with Nobeyama 45-m camera.

Objective -

* Survey the massive star forming regions of the Galactic plane in 100 GHz.
* Distant galaxy survey to understand the star-formation, history and evolution

process of galaxies.

Optical (color) : near galaxy
350 GHz : distant galaxy
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Objective Galactic plane survey

* Observation of massive star forming region with large FoV and high spatial
resolution.
* Free-free emission is dominant at the the 100-GHz continuum observation
> Good tracer of the massive star forming region (HII region)
* Physical properties will be determined by comparing the synchrotron and dust
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Nobeyama 45m telescope

Altitude

Diameter of antenna
Surface accuracy
Freduency

Angular resolution

Weight

1350 m

45 m

0.lmm

20 ~ 150 GHz
0.004°/14.4>
700 tons

Fhoto by Atsush| MEKaZawa




A A Camera Optics

Camera was installed in the Nobeyama Optics of 45-m telescope & MKID camera
45-m telescope from 10™ May to 1% Sub Reflector

June, 2018. N
The Nobeyama 45-m telescope has an = 7 I~ /—”
optics leading the beam to the camera. Sl N o
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Cryostat and Focal Plane Array
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The refractive type cold re-imaging optics has two silicon lenses.
Purpose- Coupling from a telescope focus of F/5.6 to a focal plane of F/2.

Field of view (FoV) of the camera is around 3’, which is limited by the telescope
optics.

The cold optics is composed of -

O * Two Si lenses 154mm(1K) and 300mm(4K),
» Zitex coated PTFE and Nylon filters,
* Cold baffle for reducing the stray light

* Metal-mesh filters with 120 and 300GHz cutoff
* 1K cold stop
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The focal plane array of the camera

* 109 pixels antenna-coupled Microwave Kinetic Inductance Detectors (MKID) array and the
glass-beads coated silicon (Si) lens array. 3 inch area.

MKID consists of

* coplanar-waveguide A\/4 resonator

* double-slot antenna.

* 150nm Al film is deposited on the Si wafer

Si lens array — diameter - 5.7mm, glass beads coating anti-reflection coating. (30% reflec)
Purpose - to produce low side-lobe beam pattern..
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MKID Working Principle
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Pointing
Corrections

)

This thesis presents all the work that has been done shown in Green here.



.| a). Baseline Removal
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Fluctuations in observed data caused by variations in Sky due to

weather and atmospheric changes, as well as variation in the electronic
readout system.

O Baseline removal using median filter:
* A median filter is a method where a ’window’ is defined and the
median is calculated for the window.
* Extensively used for denoising. Being a very fast method to
implement, it is used to preview the data in some cases.
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PCA
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Principal Component Analysis(PCA) is a method of transforming correlated dataset of
observations into linearly uncorrelated variables. The uncorrelated variables are then used on
the observations to represent the dataset in reduced dimensions.

Explanation:
Calculate
Dataset =X
{ ; Zx = Zpx
y T

Step 1: Arrange the dataset. =! Mean subtraction Sorted D then P

_]_ p_ nxp (BD from each column correspondingly
n: data points per sample(number = length X = Q z P
of observation * sampling rate) ' 3 T

n = Matrix Eigendecomposition

- - 8_ multiplication into
p: Time Order Data(number = number of elements N 1y pop
pixels)

Covariance matrix:
Step 2: The mean of each column is |
subtracted from all the values in that o(2,9) = -5 > (@i —2)(: — 9)
column such that every column has a mean - =
of 0. (Z) N=2412 5 - (U(m,m) o(a:,y))
a(y,z) o(y,9)

Then the covariance, X is calculated 13
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PCA

Step 3: Eigen decomposition of . Y = PDP!
P is the Matrix of Eigen vectors.

D is the diagonal matrix of corresponding
eigen values. (eigen vectors are
indipendent of one another)

Step 4: D), the diagonal matrix is then sorted
according to the eigen value from highest to
lowest. And P is also modified accordingly

to give P *,

Step 5: Z*, is calculated.

Z * is a standardized, centered version of X,
with the weights determined by the eigenvectors.

(Since P* is independent of one another, Z* will
also be independent of one another)

i Dataset=X ;

Mean subtraction
from each column

z

Matrix
multiplication

Calculate

Z* = Zp*

Sorted D then P
correspondingly

p*

2z

Eigendecomposition
into

PDP-"

14




PCA Decorrelation
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To test and demonstrate the behavior of the
decorrelation algorithm, a dataset is generated.

Process:
* A common mode is first defined

* Gaussian signal peaks added at intervals

 Random noise is added.

Sample Data
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common mode
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. of Result
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3- 20 —— data
25 —— common mode
o0 —— subtracted
f\
1 7 3000 3500 4000 4500 5000 5500 6000 6500

0 5000 10000 15000 20000 25000 30000

Loss of amplitude by using PCA

Pros: Decorrelates data. Better method than median filter.

Cons: For astronomical TODs, it inherits artifacts .
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Reglan used for baseline f"ttlng
{scannlng in bec]
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Typical Radio telescope sky removal Advantage of Multiarray large Field of View camera

A new algorithm is created to take advantage of the large FoV of the
MKID camera.

Uses off-source pixels only for baseline calculation using PCA. 5
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1). source detection using sigma clipping

O

2). Predefining a mask wher the source is

expected.

3
2
1

Sigma clipping at 4-sigma

® Masked data

aaaaaaaaaaaa

00000

An astropy method
called ‘sigma_clip’ is
used to do the sigma
clipping.

Scan area
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==~ Masked area
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. o Chunk Matrix
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e Divide the data into

chunks. .

e Create the chunk matrix

Chunk matrix

Pixels

Sigma clipping at 4-sigma

5000

10000 15000 000 25000 30000

Chunks

If it has mask, chunk
matrix value = 1.

If no mask, then O.

20
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ChunkPCA Algorithm

O

Analyze elements in
the chunk using PCA

i

Input: masked 2D data
set

v

Extract the mask and
Divide into chunks

f the element
in the chunk has
any mask

yes

Use the PCA baseline
To subtract from the raw
data

|

Get the baseline

v

Subtract the baseline
from the raw data

| Clean data -

Combine

-

Clean data

rei)eated
over all
chunks



ﬁ ChunkPCA Result
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1.25 2 —— data

- common mode
—— subtracted

1.00

O 0.75 1

O 50 2500 3000 3500 4000 4500 5000 5500

0.25 1

0.00 -

—0.251

—0.50

0 5000 10000 15000 20000 25000 30000

No loss of amplitude by using ChunkPCA
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Preservation of signal amplitude
i — PCA
1.0 \ ® <« Amplitude by ChunkPCA A
P« Amplitude by PCA —— PCA - ChunkPCA
0.8
0.6

Amplitude
=
I

o
N

30000

25000

0.0 -
20000

15000
Sample data points

—G.Z T T T
0 5000 10000

Baseline obtained by ChunkPCA compared with Conventional PCA.

The residue(shown in red) shows the improvement in baseline.
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The algorithms are implemented on a real observation data of Mars observation.

The same TOD has been used for both the PCA, and Chunk-PCA analysis.
Subtracting the two, the residue shows the rippling artifact caused by the signals has been
removed

ON .

05
0.6 1
0.4
0.2

0.0

PCA - ChunkedPCA comparison | pixelid: 41

W

—— Chunked PCA
PCA
residue

Mwmmwwwmwmwmw

1001}[) EUODD EUUD'D 40000 EUGDD EUCIGD Tﬂﬂﬂﬂ

The “rippling” artifacts in the baseline are successfully removed.
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RMS with amplitude
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1.04

0.8 1

0.6 1

0.4 4

Amplitude

0.2 1

0.0

it

— PCA
ChunkPCA
—— PCA - ChunkPCA

Amplitude of signal is 1 as shown here

This amplitude in the sample data is
increased step by step upto 10.

The RMS of the subtracted data is
calculated.

As expected, higher the amplitude,
higher the ripples in the baseline for
- PCA.

ChunkPCA shows lower RMS

10000 15000
Sample data points

20000 25000 30000

RMS value

0.15 4

0.14 A

0.13 A

0.12 A

0.11 A

0.10 1

RMS comparison with signal amplitude
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k4 Intensity calculation
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e To calculate the temperature of observed region we calibrate
the data with

* Load measurement (f_load / f_ref)

e On source measurement (f_on)
O e Off source measurement/empty sky measurement
(f_off)

As a special case for doing Radio
Astronomy with MKID data, we +3 86503 MKID042

need to calculate T , from the - _ﬁw,rm._. B
0.015
frequency shift data.

new — in =+ res 0.010 4

f(T) = —CT + fres T %
% 0.000 4 ® f brightest
where C' = kg BGH is a constant for a single MKID detector = ® fload
;F: ~0.005
fref == _C(Tarnb + T}x) -+ fres Bu
S —0.010
[<F]
> 0.015
o -
f(T) = —CT + fres i . v o
fload = _C(Tamb + Tm:) + fres ' 0 2000 4000 6000 8OO0 10000 12000 14000
sample
fon — _C(Tskyon -+ Trx) =+ fres P

26
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Chopper wheel temperature calculation
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Tskyon — Tbe_T -+ Tatm(l — B_T)

Tsk’yoff = atm(]- — e_T)

f{:n _ fr.:_f_,l'" L T{r

fiﬂmﬁ — f{:_ff T{Ltm

fcm, o fu_f_f
ﬁmd — fu_f_f

E S
T = T{.Ltm ~

L
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I have developed A gridding system to work with the Nobeyama antenna
pointing log files and MKID readout files for generating several kinds of

maps.

Making Beam maps

It’s based on an algorithm called Cygrid.

)

dEl {arcsec

100

50

-50

=100

-100

Beammap-Mars, 40, Bw-16", Kw-4".

-50 0 50

100

A single element Beammap
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* Identifying the low noise readouts.
* Syncing signal with antenna-log Beam position

during Obsewation. combination of beams | countour at -3dB
* Define the Beamwidth(bw),

kernelsize(~bw/2-3), and 100
pixelsize(bw/4-5)
e Offsets are noted from these beam

positions.

50 -

Manufactured positions of

MKID Array §, 0
8
LensArrayPosition
£40F J—
30
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B, o Beam size
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Beam size from individual element beammap Beam position from individual element beammap

Beamsize of elements of the camera 2005
20.0
@
® " . ® o o ® ® o ® ..
17.5 ® o °0 s o0 ¢
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§ ° ° \ @ @
8 12.5 1
] o
w 10.0 1
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£
S 7.5
g =50 +
5.0 -
2.5 -
— average: 16.58 " ~100 4
D.D T T T T T T
0 20 40 60 80 100 . : : : .
E|Ement5 —100 -50 0 50 100

The Beam size averaged, is very closed to the expected value.
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Antenna temperature calculated plotted using the
pipeline commands

T, plot

50
— average : 29.30 K
— 4{}_
o
‘; ﬁ. L] ‘
o ® [ ]
= o ® t- e .... L .‘. %
g}j_ e © _eove ® ® Y
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I ® o ® e
m 20 ]
=
=
g
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0 20 40 60 80 100
elements

31



Main beam efficiency

O Thnb = T;(S;:rce) X [1 — EXp (— (In2) (;ﬂl)g)]_l

Main beam temperature

1,
Tmb —
Tlmb
Aperture efficiency
2 2
??MB/ o~ QEWHM , gFWHM D L _ 08899 . pEWHM  gEWHM D |
41n2 AngA? NrA2
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Efficiencies (Mars)

Main Beam efficiency

Efficiencies calculated plotted using the pipeline

O commands

60 Nmb plot o Na plot

—— average : 34.43 % — average : 23.69 %
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Efficiencies (Mars)

\

Mmbl %)

Efficiencies compared to reported data.

Nmb(%) from NRO 45m observations in 2018-2019

801 § PReported
# Mars observation
70
60
50 4
4{) -
]

3{) -
20 <4 T T T T

20 40 60 80 100

Frequency (GHz)

nNata)

Na{%) from NRO 45m observations in 2018-2019

60

20 +

---- Ruze equation fit 2(
---- Ruze equation fit 2(
} Reported 2018
} Reported 2019

& nal%) (2019)

4 6 a8 10 12
Wavelength (mm)
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Combined Beammaps
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The offset of each Beam from the central pixel is corrected to
get a Combined Beammap
Beammap-Mars, Bw-16", Kw-4". . Beammap-Mars, Bw-16", Kw-4". -
40
50
E_ 0 - —15 E 0

- =20

-40

dAz (arcsec)
dAz (arcsec)

Combined BeamMap in dB of the Mars Combined BeamMe.lp of the Mars
observation

observation 35



RMS noise vs Integration time

0.009
—— Average

— expected
0.008

0.007 4

0.006

0.005 ~

RMS noise(MHz. freq. shift)

0.004 4

0.003

D.UDE T T T T T T
0 200 400 600 800 1000
Integration time (s)

As more maps are combined, the RMS value followed an expected decline.
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Skymap
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.__:.gj?;?'-' d The antenna log 1S USEd to Main beam temperature of Mars (06/01)
extract the RA-Dec

coordinates. —

* Cygrid can handle World
Coordinate System very
well, hence gridding
becomes very easy.

Dec [deg]

45!

* The coordinates
calculated matches the
original position of Mars
in the sky during bty
observation.

Skymap in RA-Dec coordinates.
Colorbar is Main-beam temperature (K)
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Conclusion

* With the wide FoV, larger areas can be scanned
relatively quicker with less noise.

* Baseline removal can utilize larger FoV for
decorrelation.

* A new pipeline developed for data reduction of
MKID 45m 100GHz camera.
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Thank you
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extra



9 | Interpolation of coordinates
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Interpolation of coordinates:
 Difference in sampling rate of the Antenna pointing log file and

intensity log files.
* Interpolated using linear interpolation to get the values to match in
number of data points.

Position Interpolation

e Dt G O e o o I O o e i i O R o S R oo e e D D O O ol . .
—— interpolated coordinates =
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& | Data compilation and Gridding
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Objectives:

* Intensity — antenna pointing coordinate relation.
* Intensity integration management.
* To manage different projections properly

* Survey observation data management. @=Z0 80—
HEALPix image grid o
HEALPix gridding: el
g g S
‘3:‘ ?B . :
Pros and cons of using HEALPIX P
Pros: SRR
One step solution for positioning and ghaanadRa
intensity averaging of multiple observations, Dooll iERRE
including rotation of the camera sl SER G A
Merging different observations is convenient ] S
Figure 4. The HEAL Pix pixelisation for N = 6 on the HEALPix projection
Cons: for H = 4 projected with a 45° rotation onto the mapping grid showing the
. . . . twelve facets with standard numbering. The graticule of the HEALPix pro-
RESOIUtlon goes up mn dlscreet Steps, ]_t Could jection is shown in tl'!e seven face.ts adjacent to (¢, #) = (0, 0), and those :at
. . . g lower left show the pixel boundaries for N = & as defined by the HEALPix
create problems in finding the optimum pixelisation.
resolution in which the data is processed. Credit: Mark R. Calabretta et al.
42
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