宇宙線生成核種分析による宇宙線イベントの研究

Research of Cosmic Ray Events using Cosmogenic Nuclide Analysis

笹 公和 Kimikazu SASA

筑波大学 数理物質系物理学域 / 研究基盤総合センター応用加速器部門 宇宙史センタークォーク・核物質研究部門 (宇宙元素合成分野) 連携教員 Tandem Accelerator Complex, Department of Physics, University of Tsukuba

2020年11月30日 宇宙史センター 成果報告&交流会

共同研究者 名古屋大学:三宅芙沙, 菅澤佳世 国立極地研究所:本山秀明 弘前大学:堀内一穂 東京大学:松崎浩之

Outline

- 1. Introduction: 宇宙線イベント(SEPイベント)
 - AD774/775, AD 994, BC5480の宇宙線強度増大
- 2. 宇宙線生成核種 🔿 地球史・人類史の年代指標
 - ¹⁰Be, ¹⁴C & ³⁶Cl
 - 核種検出: 6 MVタンデム加速器質量分析装置
- 3. 宇宙線生成核種分析による宇宙線イベント発 生メカニズムの解明に向けて
- 4. Summary

Solar Energetic Particle Event

太陽面の爆発

太陽フレア・コロナ質量放出。 太陽系最大の爆発現象。 膨大なX線、ガンマ線、 高エネルギー粒子(SEP)が発生。

SEPの急増として観測される現象
⇒ 1940年代以降:地上間接観測
⇒ 1960年代以降:衛星直接観測
1956年 地上で観測された最大の SEPイベント
⇒地上中性子計で大幅な 放射線増加を観測
問題点: 1940年代以前のデータなし

樹木年輪に記録された過去の超巨大SEPイベント

2012年以降に名古屋大学の三宅らにより、過去1万年程 度の間に、未知の宇宙線強度増大現象が3つあったことが 発見された!

宇宙線で生成された屋久杉年輪中の¹⁴C濃度の増大より

- AD774/775 イベント: Nature, 2012
- AD994イベント: Nature Communications, 2013

未知の太陽活動の解明

BC5680イベント: PNAS, 2017

キャリントンイベント(1859年)より2桁以上強い宇宙線強度?

詳細な原因が不明?

- 超新星爆発
- ガンマ線バースト
- <u>SEPイベント(太陽面爆発)</u>

樹木年輪に記録された過去の超巨大SEPイベント

屋久杉の年輪

- →世界各地の樹木の¹⁴C,氷床コアの¹⁰Be,³⁶CI分析
 - などでも検証 原因は**超巨大SEPイベント** →規模は観測史上最大SEPイベントの**数十倍**

- 1年での増加ではないが、他の14C変動より明らかに急激な変化!
- ・ 複数のSEPイベントを反映? Or 特殊な太陽磁場活動(磁場ゼロ)?

2. 宇宙線生成核種

- ¹⁰Be, ¹⁴C & ³⁶Cl
- 核種検出: 6 MVタンデム加速器質量分析装置

宇宙線生成核種(Cosmogenic nuclide)の生成

中性子, ミューオンなど. エアシャワーによる粒子群.

> 1 TeV (10¹² eV) のプロトンが対流圏 (~20 km)に突入 AIRES (AIR shower Extended Simulations)

2次宇宙線と大気元素(N, O, Ar)との相互作用 (自然界での原子核変換)

Secondly cosmic ray

eutron **6** proton

拡散·循環

3n — 連鎖反応

¹⁰Be (4p, 6n)

¹⁶O(n, 4p 3n)¹⁰Be $^{14}N(n, p)^{14}C$ 40 Ar(p, n α)³⁶Cl

Cosmogenic nuclides (宇宙線生成核) 10 Be(1.36 × 10⁶ yr) ¹⁴C(T_{1/2} = 5,730 yr) □ 同位体比~10⁻¹⁵ 36 Cl $(3.01 \times 10^5 \text{ yr})$

4p

筑波大学 6 MVタンデム加速器(2016)

宇宙線環境に関する研究装置

- 宇宙線環境模擬試験装置
- 加速器質量分析装置:宇宙線生成核種の同位体比10⁻¹⁰から10⁻¹⁶の検出
 ¹⁴C(T_{1/2} = 5,730 yr), ¹⁰Be(1.36 × 10⁶ yr), ²⁶Al(7.17 × 10⁵ yr),
 ³⁶Cl(3.01 × 10⁵ yr), ⁴¹Ca(1.03 × 10⁵ yr), ¹²⁹I(1.57 × 10⁷ yr)等

宇宙線環境に関する研究装置の開発

宇宙線環境模擬試験装置

低LET領域での国内唯一の専用試験装置

- LET: 2~50 MeV/(mg/cm²)の範囲を供給
- 照射粒子強度: 10²~10⁴ ions/cm²/s
- 大面積均一照射粒子(均一度90%以上, 57×57 mm²)

筑波研究学園都市内(距離6 km)

筑波大学

JAXA

6MVタンデム加速器質量分析装置による宇宙線生成核種検出

6MVタンデム加速器質量分析装置による宇宙線生成核種検出

Isotopes	¹⁰ Be	¹⁴ C	²⁶ Al	³⁶ Cl	⁴¹ Ca	¹²⁹ l
Half-life (yr)	1.36×10^{6}	5,730	7.17×10^{5}	3.01×10 ⁵	1.03×10 ⁵	1.57×10^{7}
Stable isotopes	⁹ Be	¹² C, ¹³ C	²⁷ Al	³⁵ Cl, ³⁷ Cl	⁴⁰ Ca, ⁴² Ca, ⁴³ Ca, ⁴⁴ Ca	¹²⁷ I
Isobars	$^{10}\mathrm{B}$	⁷ Li ₂ , ¹² CH ₂ , ¹³ CH, ¹⁴ N	²⁶ Mg	³⁶ Ar, ³⁶ S	⁴¹ K	¹²⁹ Xe
Chemical form	BeO	Graphite, CO ₂	Al_2O_3	AgCl	CaF ₂	AgI
Sample size (mg)	0.5	0.1 - 1	2	1	10	2
Injected ion	BeO ⁻	C^{-}	Al^{-}	Cl	CaF ₃ ⁻	I
Typical ion current (µA)	$5 (^{9}BeO^{-})$	$10 - 50 (^{12}C)$	$0.2 (^{27}Al)$	$10 (^{35}Cl)$	$0.5 ({}^{40}\text{CaF}_3)$	5 $(^{127}I^{-})$
Terminal Voltage (MV)	6.0	5.0	6.0	6.0	6.0	5.0
Detected ion (Stripper)	$^{10}\text{Be}^{3+}$ (gas)	$^{14}C^{4+}$ (gas)	$^{26}\text{Al}^{5+}$ (gas)	³⁶ Cl ⁸⁺ (foil)	⁴¹ Ca ⁵⁺ (foil)	$^{129}\text{I}^{5+}$ (gas)
Beam Energy (MeV)	20.3	25.0	36.0	54.0	32.5	30.0
Transmission (%)	15	40	25	10	8	10
Measure/Known (%)	80	_	75	70	50	90
Precision (%)	2	0.2 (Graphite) 0.4 (CO ₂)	2	2	3	1
Background (atom ratio)	$< 2 \times 10^{-15}$	< 2×10^{-16} (Graphite) < 5×10^{-15} (CO ₂)	$< 1 \times 10^{-16}$	$< 3 \times 10^{-15}$	$< 3 \times 10^{-15}$	$< 2 \times 10^{-14}$

K. Sasa et al., Nucl. Instrum. Methods Phys. Res. B 437 (2018) 98.

全核種対応型AMS装置

3. 宇宙線生成核種分析による宇宙線イベント発 生メカニズムの解明に向けて

Dome Fuji ice core, Antarctica

¹⁰Be: 東京大学·弘前大学·名古屋大学
 ³⁶Cl: 筑波大学·名古屋大学

研究に使用するサンプル

The 2nd Core:3028.54 m long Drilled at 2005-2007

Motoyama, 2007. Sci. Drill. 5, 41-43.

- 分析の分解能
 ▶ ¹⁰Be : 約1年
 - ▶ ³⁶CI : 約5年

<u>宇宙線増加イベントの原因特定 14C / 10Be</u>

- ¹⁴C/¹⁰Be: 陽子とγ線起源で異なる
 →¹⁴C/¹⁰Be: ~400-800(γ線イベント)⇔ ~ 50(SEPイベント)
- ・<u>氷床コアにおける10Be増加の検出:γ線起源ではないことを意味</u>

UTTA

地球に降り注ぐ高エネルギー粒子: GCR & SEP

高エネルギー陽子による¹⁴C, ¹⁰Be & ³⁶Cl の生成

Cosmogenic nuclides

F.Mekhaldi et al., *Nature Communication*, 8861.(2015)

高エネルギー陽子による¹⁰Be と ³⁶Cl の生成

	¹⁰ Be	³⁶ Cl		
Half-life	$1.36 \times 10^{6} \mathrm{yr}$	$3.01 \times 10^5 \mathrm{yr}$	SEP・宇宙線イベント	³⁶ Cl/ ¹⁰ Be ratio
Stable	⁹ Be	$^{35}C1^{37}C1$		
Production ¹⁴	$^{14}N(n nq)^{10}Re$	$40 \Delta r (n n q)$	SEP 1956/2/23	1.2
	$^{16}O(n, 4p3n)$	³⁶ Cl	SEP 2005/1/20	1.5
	¹⁰ Be	35 Cl (n, γ) 36 Cl		
		³⁶ Ar (n, p) ³⁶ Cl		
		39 K (n, α) 36 Cl		

AD774/775宇宙線イベントにおける10Beと36CI

BC5480年宇宙線イベント

- カリフォルニアのbristlecone pineの年輪中¹⁴Cを測定
- 5481BCから5473BCにかけて、<u>Δ¹⁴Cが8年で17.0‰増加</u>

=極小期と同程度の増加量

Summary

- 過去1万年程度の間に、太陽面爆発が原因と推定される巨大な 宇宙線強度増大(宇宙線イベント)が3回発生しており、人類活 動の継続の為にも、その原因究明が求められている。
- 2. 宇宙線生成核種¹⁰Be, ³⁶CIの生成率から太陽面爆発による陽子 エネルギー推定を試みる研究が始まっている。
- <u>AD774/775宇宙線イベントでは、14Cの他に 10Be と 36CIの増大</u> が確認されており、生成比率から太陽面爆発による陽子に起因 している可能性が高い。
- BC5480宇宙線イベントでは、³⁶CIには¹⁰Beと同期した増加は見 られなかった。イベントの原因としては、銀河宇宙線強度の急増、 大規模SEPイベントの発生、ア線イベントの可能性が残されて いる。
- 5. 今後,<u>高い年分解能度(1年単位)での宇宙線生成核種¹⁰Beと</u> <u>³⁶CI分析</u>の検討を進めている。

Thank you for your kind attention !

6 MV Tandem Accelerator System since 2016

Acknowledgements 筑波大学研究基盤総合センター応用加速器部門

共同研究者 名古屋大学:三宅芙沙, 菅澤佳世 国立極地研究所:本山秀明 弘前大学:堀内一穂 東京大学:松崎浩之 科研費 基盤研究(S) 20H05643 科研費 基盤研究(A) 19H00706

