Nuclear astrophysics experiments with stored highly-charged ions: Latest experiments at GSI

Yuri A. Litvinov

Tsukuba Global Science Week 2021 International Workshop on "Universe Evolution and Matter Origin" 11 September 2021

Why storage rings? - Versatile Capabilities

HELMHOLTZ

Physics at Storage Rings

Storage rings stay for: Single-particle sensitivity Broad-band measurements High atomic charge states High resolving power

HELMHOLTZ 🖬 🖬 👖

Photos: M. Lestinsky, A. Zschau, GSI; IMP Lanzhou; RIKEN

Where and how was gold cooked?

Radioactive Ion Beam Facility at GSI

Bound-State β-decay

Bound-State Beta Decay of ²⁰⁵Tl Nuclei

Proposal for an experiment to be conducted at FRS/ESR Measurement of the bound-state beta decay of bare ²⁰⁵Tl ions

Updated from previously accepted proposal E100

For the LOREX, NucCAR, SPARC and ILIMA Collaborations

Regarding the proposal "Measurement of the bound-state beta decay of bare ²⁰⁵TI ions" (Proposal E121), the G-PAC recommends this proposal with **highest priority** (A) and the ASTRUM time be allocated for this measurement.

3

Bound-State Beta Decay of ²⁰⁵Tl Nuclei

HELMHOLTZ I

Bound-State Beta Decay of ²⁰⁵TI Nuclei

Termination of s-process

Fate of ²⁰⁵Pb in early Solar system

Detection of Solar pp-neutrinos

Solar Neutrino Flux

HELMHOLTZ

51

Courtesy R. J. Chen and R. Singh Sidhu

Lorandite TIAsS₂ Mineral

Age = 4.31(2) Ma

December 2019

EMMI Rapid Reaction Task Force on The LOREX Project

HELMHOLTZ II II II

M. Pavicevic et al., NIM A895, 62 (2018)

Bound-State Beta Decay of ²⁰⁵Tl Nuclei

HELMHOLTZ I

Bound-State Beta Decay of ²⁰⁵Tl Nuclei

Experiment during the COVID19 23.03 – 01.04 – 06.04

Courtesy R. J. Chen and R. Singh Sidhu

Accumulation of ²⁰⁵TI⁸¹⁺ beam in the ESR

HELMHOLTZ 🖬 🖬 🏛

Courtesy R. J. Chen and R. Singh Sidhu

Typical Measurement (5 Hours)

Preliminary Results

ATOMIC DATA AND NUCLEAR DATA TABLES 36, 375-409 (1987)

BETA-DECAY RATES OF HIGHLY IONIZED HEAVY ATOMS IN STELLAR INTERIORS*

K. TAKAHASHI

University of California, Institute of Geophysics and Planetary Physics Lawrence Livermore National Laboratory, Livermore, California 94550

and

K. YOKOI†

Kernforschungszentrum Karlsruhe GmbH, Institut für Kernphysik III D-7500 Karlsruhe, Federal Republic of Germany

PHYSICAL REVIEW C 101, 031302(R) (2020)

Rapid Communications

Calculated solar-neutrino capture rate for a radiochemical ²⁰⁵Tl-based solar-neutrino detector

Joel Kostensalo [®] and Jouni Suhonen ^{®†} University of Jyvaskyla, Department of Physics, P.O. Box 35, FI-40014, Finland

K. Zuber 🕫 Institute for Nuclear and Particle Physics, TU Dresden, 01069 Dresden, Germany

(Received 19 December 2019; revised manuscript received 22 January 2020; accepted 19 February 2020; published 4 March 2020)

PHYSICAL REVIEW C 104, 024304 (2021)

Investigation of bound state β^- decay half-lives of bare atoms

Shuo Liu, Chao Gao, and Chang Xu [®]* School of Physics, Nanjing University, Nanjing 210093, China

(Received 9 June 2021; accepted 21 July 2021; published 2 August 2021)

Courtesy R. J. Chen and R. Singh Sidhu

Nuclear reaction studies in a storage ring

in-flight fragmentation at FRS

 \rightarrow applicable to radioactive nuclei

ESR Experimental Storage Ring

beam energy: 3 - 550 MeV/u ΔΕ/Ε: 10⁻⁴

rev. freq.: 25 H₂ gas target: vacuum:

250 kHz - 1 MHz 10¹⁴ atoms/cm² **10⁻¹¹mbar** deceleration of beams

→Gamow window

High revolution frequency
→ high luminosity even with thin targets

Well-known atomic charge-exchange rates

 \rightarrow in-situ luminosity monitor

Ultra-thin windowless gas targets and electron cooling
A excellent energy resolution

Detection of ions via in-ring particle detectors, clean beam and target \rightarrow low background, high efficiency

very efficient use of exotic beams for high resolution experiments

Courtesy J. Glorius

Proton-Capture Reactions in the ESR

Courtesy J. Glorius

In-Situ Luminosity Monitoring

¹²⁴Xe(p,g) - Results

PHYSICAL REVIEW LETTERS 122, 092701 (2019)

Approaching the Gamow Window with Stored Ions: Direct Measurement of ${}^{124}Xe(p,\gamma)$ in the ESR Storage R

HELMHOLTZ 🖬 🖬 🏛

J. Glorius,^{1,*} C. Langer,² Z. Slavkovská,² L. Bott,² C. Brandau,^{1,3} B. Brückner,² K. Blaum,⁴ T. Davinson,⁷ P. Erbacher,² S. Fiebiger,² T. Gaßner,¹ K. Göbel,² M. Groothuis,² A. Gumberidz R. Hess,¹ R. Hensch,² P. Hillmann,² P.-M. Hillenbrand,¹ O. Hinrichs,² B. Jurado,⁹ T. Kaus T. Kisselbach,² N. Klapper,² C. Kozhuharov,¹ D. Kurtulgil,² G. Lane,¹⁰ C. Lederer-Woods,⁷ M Yu. A. Litvinov,¹ B. Löher,^{11,1} F. Nolden,¹ N. Petridis,¹ U. Popp,¹ T. Rauscher,^{12,13} M. Reed,¹⁰ R D. Savran,¹ H. Simon,¹ U. Spillmann,¹ M. Steck,¹ T. Stöhlker,^{1,14} J. Stumm,² A. Surzhykov,^{15,16} A. Taremi Zadeh,² B. Thomas,² S. Yu. Torilov,¹⁷ H. Törnqvist,^{1,11} M. Träger,¹ C. Trageser,^{1,3} M. Volknandt,² H. Weick,¹ M. Weigand,² C. Wolf,² P. J. Woods,⁷ and Y. M.

J. Glorius, et al., PRL 122, 092701 (2019)

Towards background free measurement

Courtesy J. Glorius and L. Varga

E127: Proton Capture on ¹¹⁸Te (05.2021)

Courtesy J. Glorius and L. Varga

The CRYRING@ESR facility

M. Lestinsky et al., EPJ ST 225, 797 (2016)

erc

ASTRUm

Courtesy C. Bruno, T. Davinson, P. Woods

FAIR - Facility for Antiproton and Ion Research

Ion Beam Facilities / Trapping & Storage

Many thanks to our collaborators from all over the world !!!

erc

We are supported by:

European Research Council

Established by the European Commission

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Bundesministerium für Bildung und Forschung