Commissioning Results of 100-GHz Band Nobeyama MKID Camera

T. Nitta (University of Tsukuba)

Wide-Field Continuum Camera

- * 100-GHz band Camera (now developing)
- · Camera was installed on the Nobeyama 45m telescope
- Collaboration with NAOJ
- · free-free emission is dominant at the 100-GHz continuum
 - good tracer of the massive star forming region (HII region)

- * THz band Camera (Future Plan)
- · Our group is planning to construct the Ideg. FoV 10 m telescope at the Antarctica plateau.
- frequency band: 400 / 850 / 1300 GHz

MKID detector is one of the important technology for realizing wide-field camera

Microwave Kinetic Inductance Detector (MKID)

* Operation Principle

- Superconducting resonators operated in the microwave range
- Incident photons break Cooper-pair
 - → Kinetic Inductance is changed
 - → Resonance frequency of MKID is also changed

Signals from the objects are observed by monitoring the shift of the resonance frequency.

* Advantage of MKID

- High-detector yield is expected because the MKID fabrication process is relatively simple
- Intrinsic frequency multiplexing capability → ~1000 pixels can be measured with one LNA

Camera Cryostat

Focal Plane Array

- *100-GHz band MKID Array

 Murayama et al. in prep
 - Al-NbTiN 109 pixel MKIDs
 - 50 nm Al & 200 nm NbTiN
 - Double-slot antenna & Si lens array
 - Glass beads AR coating

- *Improvement (optical efficiency)
 - All Al MKID (gap E of Al : ~85 GHz) (2018 Obs.)
 - Loss at GND (= low efficiency)
 - NbTiN-Al MKID (gap E of NbTiN : ~1.1 THz)
 - NbTiN GND and Al signal line

Yates et al., 2011

Optical Response

Detector Yield

- · 104 / 109 pixels
- · High yield was achieved (Good fabrication process)

Sensitivity

- * Sensitivity Measurement (Single pixel readout)
 - *300 K load: 80 pW loading
 - *77 K load: 20 pW loading (close to the sky condition at Nobeyama)
 - Total optical efficiency: ηinst ~ 20%
 - → comparison between the "optical" and "thermal" responsivity
 - Optical Noise Equivalent Power: NEPopt ~ 6 × 10-16 W/rHz @20 pW

Hikawa, M-thesis, 2020

Commissioning

Camera @Receiver Cabin

* Commissioning Period

Cooling Curve

- Cooling Time: ~175 hours (~7days)
 - →It took longer time than lab due to the timing of the He-gas introduction
- Reaching Temperature: 82 mK

S21 Spectrum (for system checking)

* @ATC/Mitaka

- S21 characteristic of lab and Nobeyama 45m telescope
- Measured sensitivity (Noise Equivalent Power) are very similar

Multi-pixel Readout : Hybrid

Examples: Jupiter

Analyzed by Pranshu MANDAL

Summary

- Commissioning of MKID camera @Nobeyama 45m telescope
 - KID focal plane array and Si lenses used in cold optics are improved
 - · Sensitivity is one order higher than the previous commissioning
 - Measurement of MKID camera characteristics using the planet are succeed.
 - · The signals from some astronomical object (QSO, galactic center) have been detected.
 - We are planning to start observation from next March to April (~70 hours total).
- More Improvement for the Background Limited Observation
 - 1. Upgrade of Readout Circuit
 - 2. Cold optics for reducing the Stray Light
 - 3. Change of the MKID Coupler part
 - Improvement of the TLS Noise (1/f Noise), coupling Q factor (improvement of total Q) and Responsivity
 - →change of the material (Al → NbTiN)
 - 4. Fabrication Process (e.g. remove oxide layer on the substrate or superconducting film)