

Fun:244918 Timestamp:2015-11-25 11:25:36(UTC) System: Pb-Pb Energy: 5.02 TeV

Event 2598326 Ran 168486 Wed, 25 Nov 2015 12:51:53

Heavy lon Physics at LHCC MASSAGE MARKET AS LHCCEN Bate Control of the Section of

Tatsuya Chujo Univ. of Tsukuba

TCHoU workshop, 2022, March 24 (online)

Run: 286665 Event: 419161 2015-11-25 11:12:50 CEST

irst stable beams heavy-ion collisions

High Energy Nucleus-Nucleus Collisions

CERN (Switzerland) LHC (2009-), 27 km = 2.76, 5.02 TeV Pb-Pb /S_{NN}

- Creation of QGP in the laboratory
- Properties of QGP, Restoration of Chiral Symmetry, Origin of nucleon mass

QCD phase diagram 3

Quark Gluon Plasma (QGP)

Neutron Star Merger

Interior of Neutron Star

Baryon density

* Neutron star image: https://phys.org/news/2018-09-neutron-star-jets-theory.html

Crossover Phase Transition

Chiral SB

Normal Nucleus

Lattice QCD prediction

HotQCD Collaboration, PRD 90 (2014) 094503, arXiv:1407.6387 [hep-lat]

Ideal Stephan-Boltzmann Eq.

- ε: energy density
- T: temperature
- g: degrees of freedom
 - (3: hadrons, 37: u, d quarks & gluon (spin, color, flavor))

To produce QGP, we need:

*T*_{pc} ~ 160 MeV

 $\sim 1 \, \text{GeV/fm}^3$ 3

Manifestation of dof for quarks and gluons

Part 1. Experimental results from LHC heavy ion experiments

First Collisions (2009 - 2010)

<u>Nov. 23, 2009</u> First p-p collisions at \sqrt{s} = 900 GeV (ALICE)

30 March 2010 LHC First Physics

7 TeV collision events seen today by the LHC's four major experiments (clockwise from top-left: ALICE, ATLAS, CMS, LHCb). More LHC First Physics images »

LHC research programme gets underway

Geneva, 30 March 2010. Beams collided at 7 TeV in the LHC at 13:06 CEST, marking the start of the LHC research programme. Particle physicists around the world are looking forward to a potentially rich harvest of new physics as the LHC begins its first long run at an energy three and a half times higher than previously achieved at a particle accelerator. Read more ...

<u>Mar. 30, 2010</u> First p-p collisions at $\sqrt{s} = 7$ TeV

<u>Jan. 2010</u> **First ALICE paper**

ALICE data collection

System	Year	Beam energy √s _{NN} (TeV)	Lint
Pb-Pb	2018	5.02	0.9 nb ⁻¹
	2015	5.02	250 µb-1
	2010-2011	2.76	75 μb-1
Xe-Xe	2017	5.44	0.3 µb-1
p-Pb	2016	8.16	25 nb-1
		5.02	3 nb-1
	2013	5.02	15 nb-1
pp	2015-2018	13	59 pb-1
		5.02	1.3 pb-1
	2009-2013	8	2.5 pb-1
		7	1.5 pb-1
		2.76	100 µb-1
		0.9	200 µb-1

Run-1: 2009 - 2013 Run-2: 2015 - 2018

ALICE publications (2010-2021): 363 papers!

Space-time evolution of Heavy Ion Collisions

5. Kinetic freeze-out (momenta are fixed)

- Chemical freeze-out 4. (Hadronization)
- 3. Local thermal equilibrium and QGP
- 2. Glasma
 - **Collision!**
- Initial Condition (CGC?) 1.

Initial temperature

 Thermal radiation • Observed an excess at low p_T over the pQCD expectation • T_{eff} = 304 ± 11(stat.) ± 40 (syst.) MeV • 3.4 trillion K

*T*_{init.} ~ 300 MeV

Highest artificial temperature

Who CERN, LARGE HADRON COLLIDER What

5X10¹² DEGREE(S) KELVIN

Where SWITZERLAND ()

When 13 AUGUST 2012

On 13 August 2012 scientists at CERN's Large Hadron Collider, Geneva, Switzerland, announced that they had achieved temperatures of over 5 trillion K and perhaps as high as 5.5 trillion K. The team had been using the ALICE experiment to smash together lead ions at 99% of the speed of light to create a quark gluon plasma - an exotic state of matter believed to have filled the universe just after the Big Bang.

Collectivity of the system

ALICE, Phys. Rev. Lett. 107 (2011) 032301

Large v₂ at RHIC and LHC

To produce large v₂, it needs two conditions in Hydro cal.

- Early thermalization \sim 0.6 fm/c
- Very small η/s
- Because at early stage of collisions:
 - Reaction zone is elliptic
 - \rightarrow Different pressure gradient between short and long axis
 - \rightarrow Elliptic flow (v₂) generation
- 2) Hydrodynamic equation works for QGP at a very early time
- (~0.6 fm/c) and also needs a small η/s (= strong coupling)

"strongly" coupled QGP (sQGP) with early thermalization

arXiv:2010.03928]

J. E. Bernhard et al. Nature Phys. 15 (2019) 1113

Extracting QGP properties with flow

Shear viscosity (η/s) *is near* the quantum lower bound $(1/4\pi)$

 \rightarrow QGP is the "perfect liquid"

$\eta/s \sim 0.1 \sim 1/4\pi$

14

- Calculable by pQCD

• How much the stopping power \hat{q} ?

- •Where the energy goes?

Energy loss in QGP

Energy loss in QGP

$R_{AA} = \frac{\text{Hot Dense QGP in Pb} - \text{Pb}}{\text{Vacumme in pp}}$

- Significant suppression of jet in AA
- Large energy loss is possible by QGP only
- Extract stopping power from model comparison

$$\hat{q} \approx \begin{cases} 1.2 \pm 0.3 \\ 1.9 \pm 0.7 \end{cases} \text{ GeV}^2/\text{fm at} \quad \begin{array}{c} \text{T=370 MeV,} \\ \text{T=470 MeV,} \\ \end{array}$$

Burke et al., arXiv:1312.5003v2(JET collaboration)

Hard probes: Heavy quarks

Mass-dependent suppression of D (c-hadron) and non-prompt J/ ψ (from b-hadron) \rightarrow dead cone effect

Hard probes also flow, mass-dependent v2 of muons from c and b decays

ALICE, JHEP 11 (2015) 205, arXiv:1506.06604 [nucl-ex] CMS, EPJC 77 (2017) 252, arXiv:2003.03565 [nucl-ex]

Melting and regeneration of J/ψ

Quarkonia dissociate at high temperatures \rightarrow suppression

Melting and regeneration of J/ψ

Quarkonia dissociate at high temperatures \rightarrow suppression Clear evidence for recombination as new production mechanism

Thermometer: Melting of quarkonia: Y

CMS, PLB 790 (2019) 270, arXiv:1805.09215 [hep-ex]

21

Identified Hadron p_T spectra in Pb-Pb

ALI-PREL-131312

22

Hadron Chemistry (with 22 species by T_{ch} , μ_B)

Hadron production:Bose, Fermi distributions

Statistical thermal model

$$n_{i} = \frac{g}{2\pi^{2}} \int_{0}^{\infty} \frac{p^{2} dp}{e^{(E_{i}(p) - \mu_{i})/T} \pm 1}, \quad E_{i} = \sqrt{p^{2} + m_{i}^{2}}$$

Particle production assuming thermal equilibrium with a common chemical freeze-out temperature

 \rightarrow excellent agreement with the data over nine orders of magnitude!

T_{ch} : 153 MeV, $\mu_B \sim 0$

A. Andronic et al., Nature 561 (2018) 321

Pb+Pb @ sqrt(s) = 2.76 ATeV 2010-11-08 11:30:46 Fill : 1482 Run : 137124 Event : 0x0000000D3BBE69

Laboratory for strong interaction

- Unveiling strong-interaction potentials among hadrons via femtoscopy
- Important test for lattice QCD, input for EOS of neutron stars

ALICE Nature 588 (2020) 232 ALICE Phys. Rev. Lett. 127 (2021) 172301 ALICE Phys. Lett. B822 (2021) 136708

Small systems

Highest p-Pb multiplicity ~ 55-60% Pb-Pb

Collective behavior in small systems

pp

CMS, JHEP 1009 (2010) 91, arXiv: 1009.4122 [hep-ex] - Two particle correlations in η and ϕ spaces

 In high multiplicity p-p and p-Pb, "ridge" structure in Δη direction are seen

p-Pb

LHCb, PLB 762 (2016) 473, arXiv:1512.00439 [nucl-ex]

Collective behavior in small systems

no ridge

ALEPH Archived Data Phys. Rev. Lett. 123,

 Two particle correlations in η and ϕ spaces

 In high multiplicity p-p and p-Pb, "ridge" structure in $\Delta \eta$ direction are seen

No ridge in e+e- data

•Origin of the ridge structure is still unclear

• Initial stage (e.g. CGC) or small QGP?

Strangeness enhancement in small systems

The smooth increase of strange particle yields (w.r.t. pions) as a function of multiplicity was observed from p+p to p+Pb to Pb+Pb

Data reproduce by Color reconnection and multi parton interaction (MPI)

Q) At the same multiplicity, physics is same for pp vs. p-Pb and p-Pb and Pb-Pb?

MPI

Figure by H. Menjo

Part 2. Open questions

List of (my) questions

- What is the origin of "collectivity" or ridge in small systems?
- Color reconnection with multi-parton interaction vs. small QGP
- Same physics in pp, p-Pb and Pb-Pb if the all multiplicities are same?
- Why there is no jet quenching in high multiplicity in pp and p-Pb, but Pb-Pb does?
- What is the **initial condition**, **CGC** exists?
- Why **QGP thermalizes so quickly**?

30

- How QGP is created in heavy ion collisions?
- Is there a critical end point in QCD phase diagram?
- Thermal photons are coming from an early stage or late hadronic stage or both?
- What is the **diffusion coefficient D**_s?
- Medium response: is there a **Mach cone** shock wave?
- Chiral symmetry restoration at $\mu_B=0$ and high temperature?
- QGP in heavy ion collisions is same as QGP in early universe?

Part 3. Future of Heavy Ion Physics @ LHC (ALICE)

ALICE upgrades and physics program

Run 3 (2022-2025)

New TPC (GEM), ITS, muon tracker (MFT), Fast online trigger (FIT) O² DAQ

\rightarrow x100 statistics in Pb-Pb than Run-2

Heavy quark, jet, heavy nuclei, exotic hadron

Run 4 (2029-2032)

Forward Calorimeter (FoCal), new silicon tracker (ITS3)

Run 5 (2035-2038)

ALICE3 (~all silicon)

density (nPDF), Heavy quark

Chiral symmetry, Heavy quark, exotic hadron, thermal radiation

ECal/Preshower detector

33

ALICE Run-3 upgrade during LS2 (2019-2021)

ALICE Run-3 upgrade during LS2 (2019-2021)

TPC

ITS-TPC-MFT tracks online
→ 1 Time Frame = 11.5ms (~6 collisions)

ALICE Run-3 upgrade during LS2 (2019-2021)

- Interaction trigger
- Event characterizations (e.g. charge particle multiplicity, vertex position, event plane, centrality)
- •Collision time (TOF PID)

- 250 FLPs receive data from detectors \rightarrow ~3.5 TB/s (TPC most relevant)
- 1500 EPN nodes process sub-timeframes (→ merged to complete Time Frames)
- Synchronous reconstruction, calibration and data compression \rightarrow use of GPU mandatory
- Asynchronous stage: reconstruction with final calibration \rightarrow Final Analysis Object Data (AOD)

Run-3 Physics (1)

Thermal radiation

Di-electrons (less material, better tracking, low-B run)

Heavy flavor recombination

Recombination vs radial flow, also crucial for diffusion coefficient

Run-3 Physics (2)

Access to beauty at low pr

- Not achievable with Run 2 data

Run-3 Physics (3) Search for Chiral symmetry restoration at high T and $\mu_B = 0$ Towards precision measurement of around ρ mass region

Run-3 Physics (4)

Transport coefficients (D_s) heavy-quark diffusion coefficients

 \rightarrow Precise determination of (2 π T)D_s vs. T

New ITS Inner Barrel \rightarrow ITS3 Lol (2019): https://cds.cern.ch/record/2703140

New Foward Calorimeter (FoCal) Lol (2020): https://cds.cern.ch/record/2719928

Run-4 Physics (1) linit

A new ultra-light inner barrel (ITS3)

 ρ_g |Run-4 Physics (2)

FoCal = Forward Calorimeter

- FoCal-E: High granularity Si-W sampling Electromagnetic Calorimeter (direct photon, π^0)
- FoCal-H: Hadron calorimeter (photon isolation, jet)
- Purposes : Gluon density down to very low x (x~10⁻⁶), CGC

<u>CERN EP newsletter (2022 March)</u>

"FoCal-E PIXEL"

"FoCal-E PAD" photon energy **18 layers** cell size: 1x1 cm²

FoCal-E

mini-FoCal (2018)

"ALICE3" in Run-5 (2035-2038)

Expression of Interest arXiv:1902.01211

ALICE3 LoI @ CERN research board

Recent workshop (Oct. 2021) https://indico.cern.ch/event/1063724/

Novel measurements of electromagnetic and hadronic probes of the QGP at very low momenta

"ALICE3" in Run-5 (2035-2038)

"ALICE3" in Run-5 (2035-2038)

Selection of key points of ALICE 3 physics

Precision measurements of di-leptons

- Characterization and evolution of the QGP - Chiral symmetry restoration

(multi-)heavy-flavoured hadrons

- Transport properties and diffusion in the QGP - Mechanisms of hadronization

- Interaction potentials - Fluctuations of conserved charges

$\overline{q}q$ l<ąq>₀,⊤l **KEK PS, J-PARK SPS** RHIC Normal Nucleus LHC 300 MeV 5ρ0 Temperature

Increase of ρ meson width, ρ -a₁ mixing

- Linked to a partial restoration of chiral symmetry
- At high temperature, in-medium modification of ρ meson and regeneration of a_1 meson \rightarrow Look at this change!

P.M Hohler and R. Rapp, Phys. Lett. B 731 (2014) 103

• Difficult to measure a1 meson experimentally. Needed precision measurement below < 1 GeV/c²

High precision measurement of e⁺e⁻ pairs

- $M_{ee} \sim chage around 1 GeV/c^2 : \rho-a1 mixing!$
- Needed an extremely high precision
- Cannot be achieved ALICE Run-3 (ITS2), Run-4 (ITS3)
- Need ALICE Run-5 ("ALICE 3")

R. Rapp private communication

CGC, Glasma

ALICE3 & FoCal+? (Run-5)

QGP production, Chiral symmetry restoration @ high T

EIC eAvs. LHC HI

- At BNL, EIC will start to operate around 2030
- A high luminosity polarized e, p / ion collider at $\sqrt{s} = 28-140$ GeV
- Factor 100 to 1000 higher luminosity as HERA
- ECCE has been recommended as "Detector-1" by DPAP (Mar. 2022)

Good synergies with EIC

ZDC design for EIC, figure by S. Shimizu

Summary

- ✓ Since 2009, LHC HI program provides rich and new views on quark gluon plasma produced at LHC.
- ✓ Still there are remaining big questions.
- ✓ To answer these, upgrades are planed.
- Another discoveries and surprises in next two decades !

-

New directions in science by new tools

"New directions in science are launched by new tools much more often than by new concepts.

The effect of a concept-driven revolution is to explain old things in new ways. The effect of a tool-driven revolution is to discover new things that have to be explained."

Freeman Dyson

Slide from K. Hanagaki (KEK), 2021

54

Thank you for your attention!

55