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Gravitational Waves discovery
Neutron star mergers! LIGO observatory in USA

The light was also observed

This is very exciting for our field!!!
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The nuclear physics

Neutron is converted to proton via beta decay. Number of protons defines the element. 
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Neutron captures
β decays

Fe

U

『How were heavy elements made ?』
rapid neutron capture: r-process 

Solar abundance

N=50

N=82

N=126
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The nuclear physics

Neutron is converted to proton via beta decay. Number of protons defines the element. 

????
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RIKEN Campus & RIBF
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RI Beam Factory at RIKEN
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Rare RI Ring

3 injectors + cascade of 4 cyclotrons
⇒ several to 345 MeV/nucleon

A variety of primary beams 
World highest-intensity RI beams 
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Production of RI beam at RIBF
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Nuclear binding energy
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The Mass of the Atom

M(4He) = 2 ⋅ mp + 2 ⋅ mn + 2 ⋅ me
- Binding Energy

 X

2H

2H

4He



Specifications
Circumference 60.35m
Betatron tune 1.21 / 0.84
Momentum acceptance ±0.5%
Transverse acceptance 20π / 10π mm mrad
RI beam energy 200 MeV/u
Revolution frequency 2.82MHz

2012 Construction started
2013 Completed
2014 Test of devices
2015 1st & 2nd commissioning 
2016 3rd commissioning
2017 4th commissioning
2018 1st physics run 
2020   Kicker upgrade 
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South of 132Sn 
(N=82)

Near 78Ni  
(Z=28, N=50)

Production yields measured (1460)

238U in-flight fission (119)
124Xe P.F. (10)
78Kr P.F. (3)
70Zn P.F. (8)

New isotopes (2007–2018)

 X
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Shell quenching at N=82 & Z<50?
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Pearson et al. Phys. Lett. B 387, 455 (1996). Manea et al., Phys. Rev. Lett. 124, 092502 (2020).

Mass measurement across N=82 132Cd @ISOLDE/CERN



Deformation below Z=50?
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Deformation below Z=50?
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RI with short half-lives and low production yield
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Unknown masses
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24 Mar. 2022, TCHoU WorkshopUnion of storage ring & cyclotron
Critical Mismatch!! 

DC beam vs. pulsed beam
How to solve?

The Rare-RI Ring (R3)

 X

ACDC
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synchronizing all machines is therefore not available for sec-
ondary beams. The radioactive ions produced at the target of
the fragment separator are identified in-flight event-by-event
and then injected and stored individually into the storage ring.
The present concept realized at the RIBF is called the indivi-
dual injection technique and was originally proposed by
Meshkov et al [14]. This is the most effective way to store
extremely rare isotopes. The advantage of the present method
is that in-flight particle identification can be achieved in the
fragment separator, yielding a precise knowledge of the beam
emittance. Furthermore, the selective injection of exotic species
of interest may be realized in the future. Figure 1 indicates the
difference in beam structure between the synchrotron- and
cyclotron-based storage ring facilities.

To realize the individual injection, a fast-kicker system is
required. The kicker should respond with a very fast rise time
to reach a flat-top of magnetic field before the particle is
injected. It should also involve a very fast charging system to
excite the kicker magnet at any time when the particle is
produced. We have already succeeded in developing such a
fast-kicker system satisfying the present requirements. More
details can be found in [15]. We have also recently succeeded
in circulating α-particles from 241Am in the Rare-RI Ring [16].

2. Physics cases

In the Rare-RI Ring facility, the first goal of the physics case
is the mass spectrometry of neutron-rich exotic nuclei. All of
the experimental devices are designed to achieve atomic mass
values on the order of 10−6 in accuracy.

The atomic mass is one of the fundamental quantities for
all sciences. In nuclear physics, the binding energy, calculated
from the atomic mass, is one of the most important properties
of nuclides. Nuclear binding results from complicated inter-
actions among protons and neutrons embedded in the nucleus.
In recent decades, a variety of nuclear models have been
developed to describe atomic masses; however, their predic-
tion power is not sufficient for exotic nuclei. In particular, a
significant change in the shell structure is observed close to
the neutron drip line. This can be clearly seen at the two-

neutron separation energies shown in figure 2. Here, the two-
neutron separation energies S n2 for the even-N nuclides are
plotted as a function of the atomic number Z [17]. The tra-
ditional N = 20 shell gap disappeared, whereas new magic
numbers of N = 16 [18] and N = 34 [19] were discovered.
Recent measurements of β-decay half-lives in the vicinity of
78Ni still suggest a sizable magicity for N = 50 [20]. A current
challenge is to measure the masses of such exotic nuclei very
precisely in order to understand the evolution of the shell
structure and eventually understand fundamental interactions
for all nuclides over the nuclear chart.

The precision masses of exotic nuclei can constrain the
nuclear matter equation of state (EOS). The energy density of
nuclear matter is described as a function of the nucleon
density n as [21]
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where w0 and n0 are the saturation energy and saturation
density, respectively, and α = − x1 2 , where x is the proton
fraction. The proton number density is nx, and the neutron
number density is −n x(1 ). K0 is the incompressibility. S0 and
L are related to the density-dependent symmetry energy S n( ).

=S S n( )0 0 , and = =L n S n3 (d d )n n0 0. It is noted that L,
referred to as the symmetry energy density derivative
coefficient, is sensitive to the masses of neutron-rich exotic
nuclei. For several neutron-rich nuclei, such as doubly magic
78Ni, the mass excesses are calculated as a function of L using
different parameter sets of the EOS in a macroscopic model
[21]. The larger coefficient L is constrained by the smaller mass
excess of 78Ni, corresponding to the smaller symmetry energy
at sub-nuclear densities. Thus, precision mass measurements
for neutron-rich nuclei are required to investigate the nuclear
matter property. EOS will also be applied to understand the

Figure 1. Schematic drawing of the beam structures of the
synchrotron- and cyclotron-based storage ring.

Figure 2. Two-neutron separation energies for the even-N nuclides as
a function of the atomic number Z. Data are taken from the recent
Atomic Mass Evaluation [17]. Dashed lines connect the data points
with the same N. Solid lines indicate the traditional magic numbers.

2

Phys. Scr. T166 (2015) 014039 T Yamaguchi

- Select a particle of interest 
- Inject it into storage ring individually �
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Enhancement of particle 
selection for R3
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Y. Abe et al., RIKEN Acc. Prog. Rep. 52 (2019)



Mass measurement principle
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Accuracy of beta measurement 

β1  meas.

T0, T1 meas.

F5 position detector (PPAC)
(dispersive plane)

Position detector is too thick, energy loss introduces uncertainty in beta measurement!

F3

S0

m0 is known mass 
m1 is unknown mass



Beta determination

127Sn and 124Ag were used to determine the two parameters
Search ranges: Length = [84.8m, 84.9m],  TOFoffset = [325.35ns, 325.55ns]

Get B𝜌0 & 𝛾t
C0 = 60.3507 m

Length = 84.8592 m
TOFoffset = 325.47 ns
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New R3 mass measurement result
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H.F. Li et al. PRL 2022 accepted No evidence of large deformation below Z=50!!



Impact in r-process abundances
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Portable Routines for Integrated nucleoSynthesis Modeling (PRISM) 
reaction network, neutron star merger condition; entropy 40kB/baryon, 
timescale 20ms, electron fraction Ye=0.15~0.35.
Mumpower et al. PRC92(2015), Zhu et al., Astro. J. 863 (2018)

Mass model FRDM (baseline), 
Our new mass measurement of 123Pd (redline) with its uncertainty
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Impact of 123Pd mass
Neutron capture cross section:
122Pd ↓ 2.6
123Pd ↑ 2.2
Probability 𝛽-delayed neutron emission
123Rh ↑ 

Mass difference FRDM ~500keV
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Thank you!
ありがとうございます！
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Challenge #2
Minimizing energy loss on beamline
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Accuracy of beta measurement 

β1  meas.

T0, T1 meas.

F5 position detector (PPAC)
(dispersive plane)

Position detector is too thick, energy loss introduces uncertainty in beta measurement!

F3

S0

S. Suzuki, NIMA 965 (2020)
𝞂 = 38ps, eff = 95%, dE/E<10-5



Large area position-sensitive DL-E-MCP
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G. Hudson-Chang
Master (Surrey Uni.)

Z. Ge, PhD 
(IMP/Riken)

Thin foil à low energy loss

R. Crane
Master (Surrey Uni) 



Comparison with PPAC resolution
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PPAC DL-E-MCP
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Compact

G. Hudson-Chang
Master (Riken/Surrey)



Challenge #3
Matching emittance at ring injection
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Technical challenge: transmission efficiency

Before	R3� A*er	R3�

Nagae-san’s	analysis	(R3	mee1ng	2016/12/8)�

Lower	acceptance!�

Experiment

 X
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Solving the efficiency issue
Before After Redesign the injection optics for Rare-RI Ring

 X

Efficiency: x14 times
Total R3 eff. 2%

0.1

1

10

100
F3 S0 ILC1 ILC2 RMD-4 ELC

Tr
an

sm
iss

io
n 

Ef
fic

ie
nc

y 
[%

]

Exp. New Optics

Exp. Standard Optics

Simulation Injection 
into ring

14 times 
increase!!

Goal (10%)



Large area position-sensitive DL-E-MCP
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Kicker magnets

a b c d
New kicker magnets configuration

DL-E-MCP could be placed inside the kicker 
magnet to monitor emittance



Challenge #4
Determination of revolution time
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Accuracy of beta measurement 

β1  meas.

T0, T1 meas.

F5 position detector (PPAC)
(dispersive plane)

Position detector is too thick, energy loss introduces uncertainty in beta measurement!

F3

S0

S. Suzuki, NIMA 965 (2020)
𝞂 = 38ps, eff = 95%, dE/E<10-5
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Kicker
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Rough determination of revolution time à deduce turn number

R3

Timing detector

- Efficiency: 90 %
- Time resolution: 70ps

100 mm

50 mm
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D. Nagae et al., NIMA 2020
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(almost) Perfect Isochronicity!
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78Ge signal

Highest sensitivity Schottky pickup detector 
    →　detection of Z=32 (lightest isotope ever)



Challenge #5
Ejection from the ring
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Kicker limitation at ejection
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Upgrade of the kicker magnets
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b, c for injection
a, d for ejection

a b c da b c
Previous config.



Timing detector
(C-foil + MCP)
Nagae et al.
NIMA 2020

10 quadrupoles

Septa
for injection

Septa
for extraction

1 dipole

Selected RI
(from BigRIPS)

Plastic counters

Resonant
Schottky pick-up

R3 in-ring detectors
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DL-E-MCP 
Position-sensitive

Delta-ray monitor
Timing detector
Omika et al., NIMB 2020

Position-sensitive
Schottky pick-up ?
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Monitoring F5 position is necessary for verifying the isochonicity*  

* Revolution time is independent of momentum 



F3

Fast-kicker system

R3

Trigger signal

BigRIPSF0

Injecting RI

SRC

(Septum)

(Kicker
magnets)

Self-trigger injection method

Cyclotron Storage ring

In-flight separator
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Proposed by I. Meshkov et al., NIMA523 (2004)

NEW!!



- Succeeded in detecting the single 78Kr36+ ion
- Frequency resolution: ~1.3x10-6 (FWHM)
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R3

Storage of single-ion (@MS01)

Resonant Schottky pick-up

Tuners

Ceramic
tube

Resonance frequency : 173MHz (TM010)
Tuning range :±1.5MHz
Shunt Impedance Rsh : 161kΩ 
Quality factor Q0 : 1880
Ceramic tube size : 290mmΦ, 15mm 
thickness

Pick-up coupler
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Near 78Ni  
(Z=28, N=50)

Production yields measured (1460)

238U in-flight fission (119)
124Xe P.F. (10)
78Kr P.F. (3)
70Zn P.F. (8)

New isotopes (2007–2018)

In November 2018: 74,76Ni isotopes were measured
77Ni is  planned to be measured in 2021

 X

76Zn

74Ni76Ni

78Zn
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Near 78Ni  
(Z=28, N=50)

Production yields measured (1460)

238U in-flight fission (119)
124Xe P.F. (10)
78Kr P.F. (3)
70Zn P.F. (8)

New isotopes (2007–2018)
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Astrophys. J. 816, 44 (2016)

R.N. Wolf et al., 
PRL110, 041101 (2013)


