Femtoscopic study in high-energy heavy-ion collisions

TCHoU Research Member Meeting (Date: 24/06/2022)

Ashutosh Kumar Pandey

Postdoctoral Research Associate, Tomonaga Center for the History of the Universe, University of Tsukuba

Introduction

- Lattice QCD predicts QGP at ~150 MeV temperature
- Big-Bang theory of the universe predicts that matter existed in QGP form after ~1µs of the universe formation

Relativistic Colliders

• Compressed Baryonic Matter (CBM) at FAIR/GSI and J-PARC heavy-ion experimental project at KEK/JAEA

Heavy-ion collisions

- Heavy-ions like Gold (Au⁷⁹⁺) and Lead (Pb⁸²⁺) are allowed to collide at ultra-relativistic speed in relativistic colliders like the LHC and RHIC
- Very hot and dense QGP like medium formation in heavy-ion collisions due to inelastic collisions between nuclei and conversion of kinetic energy into heat
- To obtain the equation of state, it is important to know the dimensions of fireball which is impossible to measure directly due to its very small size (size $\sim 10^{-15}$ m, lifetime $\sim 10^{-23}$ s)

Introduction (contd.)

- Femtoscopy (or HBT technique) provides a direct tool to measure the source size
- Probe space-time characteristics of the source using particle correlations in momentum space
- Main sources of correlations:

```
Quantum statistics (QS) — HBT analysis
```

- Identical bosons Bose-Einstein quantum statistics
- Identical fermions Fermi-Dirac quantum statistics

➡ Final-state interactions (FSI)

- Strong interaction
- Coulomb interaction (repulsion/attraction)

QS + **FSI**→ **Femtoscopic** analysis

Two-particle correlation function

$$\mathbf{C_2} = \frac{\mathbf{P_2}(\mathbf{p_a},\mathbf{p_b})}{\mathbf{P_1}(\mathbf{p_a})\mathbf{P_1}(\mathbf{p_b})}$$

Koonin-Pratt Equation,

- → $P_2(p_a, p_b)$ probability of detection of particles with momenta p_a and p_b
- \rightarrow P₁(p_i) probability of detection of particle with momentum p_i

6

Bertsch–Pratt 'Out-Side-Long' coordinate system

side

- side is interpreted as geometric size
- out gives info on emission process
- long is used for emission time approx.

Longitudinal co-moving system (LCMS):

A rest frame moving along the beam direction such that $P_z = 0$

 $V_{long} = (P_0 V_z - P_z V_0) / M_T$ $V_{side} = (P_x V_y - P_y V_x) / P_T$ $V_{out} = (P_x V_x + P_y V_y) / P_T$

Pair rest frame (PRF):

$$V'_{out} = \frac{M_{inv}}{M_T} \frac{(P_X V_X + P_V V_V)}{P_T} - \frac{P_T}{M_T M_{inv}} P V$$

Where $M_T = P_0^2 - P_z^2$, $P_T^2 = P_x^2 + P_y^2$, $M_{inv}^2 = P^2$ and $k_T = (p_{T1} + p_{T2})/2$

 p_2

Experimental Correlation function $\mathbf{C}(\mathbf{q}) = \frac{\mathbf{S}(\mathbf{q})}{\mathbf{B}(\mathbf{q})}$

- **S(q)** distribution of *q* of pairs from same events (signal)
- B(q) distribution of q of pairs from different events (background)

where q : relative momentum of the pair particles

Fit function for identical charged pions and kaons:

$$C(q) = N[(1 - \lambda) + \lambda K(q_{inv})(1 + G(q))]$$

$$G(q) = exp(-R_{out}^2 q_{out}^2 - R_{side}^2 q_{side}^2 - R_{long}^2 q_{long}^2)$$

* λ - fraction of the pairs originate from the spatio-temporal region relevant for correlations, *K(q_{inv}) - squared Coulomb wave function averaged over a spherical source

Identical pion-pion femtoscopy

• Source radii decreases with increasing average transverse momentum

Identical pion-pion femtoscopy (cont.)

Femtoscopic studies w.r.t. Ψ_1

- Directed flow v₁ (= (cos(φ Ψ₁))) is produced due to interaction between spectator and participant particles
- $v_1(\eta)$ is zero three times at around mid, forward and backward rapidities : possible signature of phase transition (J. Brachmann et al. Phys. Rev. C 61 (2000) 024909)
- v_1 can't be explained by hydrodynamical models unlike v_2 or v_3

Femtoscopic studies w.r.t. Ψ_1

- v₁ signal can be generated from assuming the "tilted source" initial conditions
- Femtoscopic measurements w.r.t. Ψ_1 can give the information about tilt angle θ_s

Femtoscopic studies w.r.t. Ψ_1

• Fit function for identical particles with cross term:

$$C(q) = N[(1 - \lambda) + \lambda K(q_{inv})(1 + G(q))]$$

$$G(q) = exp(-R_{out}^2 q_{out}^2 - R_{side}^2 q_{side}^2 - R_{long}^2 q_{long}^2 - R_{os}^2 q_{out} q_{side} - R_{ol}^2 q_{out} q_{long} - R_{sl}^2 q_{side} q_{long})$$

Fit function

$$R_{\mu,0}^{2} + 2R_{\mu,1}^{2}cos(\phi - \Psi_{1}) + 2R_{\mu,2}^{2}cos(2(\phi - \Psi_{1})), (\mu = o, s, l, ol)$$

$$R_{\mu,0}^{2} + 2R_{\mu,1}^{2}sin(\phi - \Psi_{1}) + 2R_{\mu,2}^{2}sin(2(\phi - \Psi_{1})), (\mu = os, sl)$$

$$\theta_{\rm s} = \frac{1}{2} \tan^{-1} \left(\frac{-4R_{\rm sl,1}^2}{R_{\rm l,0}^2 - R_{\rm s,0}^2 + 2R_{\rm s,2}^2} \right)$$

Event plane reconstruction:

$$\Psi_n = \frac{1}{n} \tan^{-1} \left(\frac{Q_{x,n}}{Q_{y,n}} \right) = \frac{1}{n} \left(\frac{\sum w_i \sin(\phi_i) / \sum w_i}{\sum w_i \cos(\phi_i) / \sum w_i} \right)$$

• $w_i = \eta$ for TPC

- w_i (For EPD) = pm*wgr[ringID]*aa
- ringID = Tile/2 ,
- double wgr[16] = { 6.5, 4.0, 2.5, 1.0, 0.0, 0.0, -1
- Float_t pm =1; if (Id<0) pm=-1;
- aa= NMip ;if (NMip<0.3) aa=0.; else if (NMip>3.0) aa=3.0;

Recentering:

Event plane resolution:

$$\operatorname{Res}\{\Psi_{n,a}\}\operatorname{Res}\{\Psi_{n,b}\} = \langle \cos(n[\Psi_{n,a} - \Psi_{n,b}]) \rangle$$

$$\operatorname{Res}\{\Psi_{n,b}\}\operatorname{Res}\{\Psi_{n,c}\} = \langle \cos(n[\Psi_{n,b} - \Psi_{n,c}]) \rangle$$

$$\operatorname{Res}\{\Psi_{n,c}\}\operatorname{Res}\{\Psi_{n,a}\} = \langle \cos(n[\Psi_{n,c} - \Psi_{n,a}] \rangle$$

$$\operatorname{Res}\{\Psi_{n,a}\} = \sqrt{\frac{\langle \cos(n[\Psi_{n,a} - \Psi_{n,b}]) \langle \cos(n[\Psi_{n,c} - \Psi_{n,a}]) \rangle}{\langle \cos(n[\Psi_{n,b} - \Psi_{n,c}]) \rangle}}$$

➡ TPC - detector a, EPD East - detector b, EPD West - detector c

$$\operatorname{Res}\{\Psi_{n,EPD}\} = \langle \cos(n[\Psi_{n,EPD} - \Psi_{n,TPC}]) \rangle / \operatorname{Res}\{\Psi_{n,TPC}\}$$

Non-identical particles femtoscopy

• In a hydrodynamical induced system :

 $\beta_{particle} = \beta_f + \beta_t$

component of mean emission point of a single particle parallel to the velocity

$$\langle x_{out} \rangle = \frac{\langle r\beta_f \rangle}{\left\langle \sqrt{\beta_t^2 + \beta_f^2} \right\rangle} = \frac{r_0 \beta_0 \beta}{\beta_0^2 + T/m_t}$$

assume a Gaussian density profile with radius r_0 and linear transverse velocity profile $\beta_f = \beta_0 r/r_0$ then we

Adam Kisiel, *Phy.Rev.C* **81**, 064906 (2010)

emission asymmetry

$$\mu_{out}^{light,heavy} = \left\langle r_{out}^{light,heavy} \right\rangle = \left\langle x_{out}^{light} - x_{out}^{heavy} \right\rangle$$

- Lighter particles emitted closer to the centre/later than heavier particles
- Emission asymmetry only arises in a system where both random (thermal) and correlated (flow) velocities exist and are comparable in magnitude

Extracting the source size and emission asymmetry

Ashutosh Kumar Pandey (IIT BOMBAY)

Extracting the source size and emission asymmetry

 $\eta = \frac{1}{k^* a_C} \longrightarrow \text{Bohr radius of the pair (248.52 fm for pion-kaon)}$

$$\zeta = k^* r^* (1 + \cos \theta^*)$$

Angle between k* and pair relative position r* in PRF

$$f_C(\overrightarrow{k}^*) = \left[\frac{1}{f_0} + \frac{1}{2}d_0\overrightarrow{k^*}^2 - \frac{2}{a_C}h(\overrightarrow{k}^*a_C) - i\overrightarrow{k}^*A_C(\overrightarrow{k}^*)\right]^{-1}$$

where $f_0 = 0.137$ fm for like-sign pair of pion-kaon, -0.071 fm for unlike-sign pair of pion-kaon, d_0 is the effective radius (taken to 0 for small k* where 1/f₀ term dominates).

$$F(\alpha, 1, z) = 1 + \alpha z + \alpha (\alpha + 1) z^2 / 2!^2 + \dots$$

Non-identical particles femtoscopy

Lisa MA, et al. 2005. Annu. Rev. Nucl. Part. Sci. 55:357-402

 3D correlation function converted into infinite set of 1D functions in terms of spherical harmonics (Y_l^m)

$$C_{\rm l}^{\rm m}(\vec{k^*}) = \frac{1}{\sqrt{4\pi}} \int d\varphi d(\cos\theta) C(k^*,\theta,\varphi) Y_{\rm l}^{\rm m}(\theta,\varphi)$$

Summary

- Average source radii decreases with increasing pair transverse momentum
- Average source radii increase with increasing system size/multiplicity
- Lifetime of the fireball increases from periferal to central collisions
- Finite emission asymmetry observed between pions and kaons which shows pions are emitted later than kaons
- It is expected in a system with strong collectivity which includes flow of resonances (consistent with model predictions, e.g. Therminator2 coupled with viscous hydrodynamics)
- Source size and emission asymmetry increase from peripheral to central collisions
- Results may suggest a 2.1 fm/c delay in emission time which means different particle species freeze-out at different times

THANK YOU

Correlation from strong interaction

$$C(q) = \int S(r) |\psi(q, r)|^2 d^4 r \qquad q = 2k^*$$
measured correlation emission function
(source size/shape) pair wave function
(includes cross section)

$$\psi = exp(-ik * r) + f \frac{exp(ik^*r)}{r} \qquad s-wave scattering approximation$$

$$f^{-1}(k^*) = \frac{1}{f_0} + \frac{1}{2}d_0k^{*2} - ik^* \qquad \text{effective range approximation}$$

For only Strong Final State Interaction:

$$C(k^*) = 1 + \sum_{S} \rho_S \left[\frac{1}{2} \left| \frac{f^S(k^*)}{R} \right|^2 \left(1 - \frac{d_0^S}{2\sqrt{\pi R}} \right) + \frac{2\Re f^S(k^*)}{\sqrt{\pi R}} F_1(2k^*R) - \frac{\Im f^S(k^*)}{R} F_2(2k^*R) \right]$$

Lednicky, Lyuboshitz, Sov. J. Nucl. Phys., 35, 770 (1982)

Ashutosh Kumar Pandey

spin fractions

• The correlation function is finally characterised by three parameters:

- radius R, scattering length f₀ and effective radius d₀
- Cross-section $\boldsymbol{\sigma}$ (at low k*) is simply: $\boldsymbol{\sigma} = 4\pi |f|^2$

$$F_1(z) = \int_0^z \chi e^{\chi^2 - z^2} / z dz$$

$$F_2(z) = \frac{(1 - e^{-z})}{22}$$