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QCD : the fundamental theory of quarks

Big Bang
≈ +0.1 m sec (1012 K)

Phase transition: 
 hot quark matter (QGP)
 => ordinary matter (protons etc.)

Important as the initial 
condition of our Universe 
(atoms, molecules, stars, life, ...).



Nature of the QCD transition off the phys. pt. is important 
<=  properties at the phys. pt. affected by scaling of nearby critical points.

Nature of T > 0 QCD transition as function of mq's

The traditional picture given by this Columbia plot

The physical point locates in the crossover region.



Nature of T > 0 QCD transition as function of mq's

The traditional picture given by this Columbia plot

Pisarski-Wilczek, Phys. Rev. D 29 (1984) 338
Wilczek, Int. J. Mod. Phys. A7 (1992) 3911
Rajagopal-Wilczek Nucl. Phys.  B399 (1993) 395 

Universality arguments with effective chiral  model around the chiral limitsσ

=>  Nf = 2 : 2nd order in the O(4) univ. class  //  Nf ≥ 3 : 1st order

Z(3) Potts

Z(3) Potts + ext. field

SU(2)×SU(2)×U(1) σ

SU(3)×SU(3)×U(1) σ



Nature of T > 0 QCD transition as function of mq's

The traditional picture given by this Columbia plot is still under many discussions.

If U(1)A [broken by anomaly at all T's] is effectively restored around Tc

=>  Nf = 2 chiral trans. is either 2nd or 1st
=>  Nf = 3 1st order region may be smaller [anomaly was a source of pot.]  ϕ3
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Nature of T > 0 QCD transition as function of mq's

The traditional picture given by this Columbia plot is still under many discussions...

Is the 2-flavor 
chiral limit 2nd 

order?

D'Elia+, PRD 72 (2005);   
Cossu+, Lattice2008;   
Philipsen+Pinke, PRD 93 
(2016)

1st order for Nf = 2 
on coarse lattices 
with unimproved 
lattice quarks

=>  Nf = 2 chiral trans. is either 2nd or 1st
=>  Nf = 3 1st order region may be smaller [anomaly was a source of pot.]  ϕ3

See also
S.Aoki+, PRD 86 (2012)

If U(1)A [broken by anomaly at all T's] is effectively restored around Tc



Nature of T > 0 QCD transition as function of mq's

The traditional picture given by this Columbia plot is still under many discussions...

Is the 2-flavor 
chiral limit 2nd 

order?

Can the 3-flavor 
1st order region 

survive in the 
continuum limit?

Light-quark 1st order region for Nf ≈ 3 shrinks with  (Nt )a → 0 → ∞
Kuramashi+,  PRD 101 (2020):  improved Wilson, Nt=12
Dini+, PRD 105 (2022):  improved KS, Nt=8
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Nature of T > 0 QCD transition as function of mq's

The traditional picture given by this Columbia plot is still under many discussions...

Is the 2-flavor 
chiral limit 2nd 

order?

Can the 3-flavor 
1st order region 

survive in the 
continuum limit?

Where is the Critical Point 
 in the thermodynamic + 

continuum limit?

our work 

in this talk

Recent studies on the location of CP in heavy-quark QCD

=>  We still have strong cutoff & spatial volume dependences.

Saito+ (WQHOT-QCD),  PRD (2011/2014):  HPE LO, Nt=4, Ns/Nt=6
Ejiri+ (WHOT-QCD), PRD (2020):  HPE eff-NLO, Nt=6, Ns/Nt=4–6;  Nt=8, Ns/Nt=3
Cuteri+, PRD (2021):  Nf=2, fullQCD, Nt=6,8,10,  Ns/Nt=4–7(10)



Cuteri+, PRD (2021)

Z(2) FSS fit

Nt=6

excludedremoved

Motivations
Binder cumulant analysis based on the Z(2) FSS expected around CP

So far, however, identification of 
the Z(2) FSS is not a simple task 
--- removal of many high-T data 
required / correction terms to the 
FSS introduced.

These make the analyses slightly ambiguous 
& call careful systematic error estimations.

=>  Simulations with larger spatial volumes & high statistics 
                                                              to identify the FSS more clearly. 
=>  Multi-point reweighting to vary coupling parameters continuously.

This talk is based on
Kiyohara+ (WQHOT-QCD),  Phys.Rrev.D (2021) [DOI: 10.1103/PhysRevD.104.114509]
Wakabayashi+ (WHOT-QCD),  Prog.Theor.Exp.Phys. (2022) [DOI: 10.1093/ptep/ptac019]
Ashikawa+ (WHOT-QCD),  ongoing



Lattice setup

Nt a

a

Ns a = L

T =
1

Nta

Nt :  lattice size in the euclidian 
      time direction
a  :  lattice spacing

For a given T,
continuum limit:  Nt → ∞

To suppress compt. costs on large spatial volumes, we first revisited Nt=4 [Kiyohara+]. 
We are now extending the study to Nt=6 [Ashikawa+, ongoing].

Spatial system size L = Ns a   <=  we control it by the "aspect ratio"  Ns / Nt  = L T. 
previous studies :  L T ≈ 4 – 7 (10)
our sudy :             L T up to 12 or 15    



Lattice setup

Our lattice action:  plaquette gauge + standard Wilson quarks

Wilson quark kernel:

Quark contribution to the effective action:

closed loops of  with B κ [loop length]

hopping term

NLO:
 bent Polyakov loops Ωi

κ6 κNt+2

HPE ≈  expansion

HPE worsens with   ( )    =>  higher order terms required with .

1/(amq)
a → 0 Nt → ∞ Nt → ∞

Hopping Parameter Expansion to reduce simulation costs for large spatial volumes

LO:
Polyakov loop Ω

κ4 κNt

B
B

B
B



Simulation incorporating LO + NLO meas.'s

LO incorporated in the configuration generation

Kiyohara, Kitazawa, Ejiri, KK (WHOT-QCD),  PRD 104 (2021)

NLO incorporated in the measurements through multi-point reweighting

β → β* = β + 48Nf κ4

 term in the effective action   (  for Nt=4) 

can be incorporated in PHB+OR parallel simulation efficiently
by keeping all temporal sites within a node

λ∑
x

Ω(x) λ = 48Nf Nt κ4

⟨Ô(U)⟩NLO
β,λ =

⟨Ô(U) e−δSLO−SNLO(β,λ)⟩LO
β̃,λ̃

⟨e−δSg+LO−SNLO(β,λ)⟩LO
β̃,λ̃

δSg+LO = Sg+LO(β, λ) − Sg+LO(β̃, λ̃)

Simulations at several  => measure at 

Overlap problem resolved by the inclusion of LO in 
configuration generations  <= essential on spatially 
large lattices in this study

(β̃*, λ̃) (β*, λ)

403x4

=>  Simulation cost ≤ 1/100 of full-QCD simulations :  large spatial volume enabled 



Study on Nt = 4 lattices
Kiyohara, Kitazawa, Ejiri, KK (WHOT-QCD),  PRD 104 (2021)

Simulations:  Nt=4,  Ns/Nt = LT = 6, 8, 9, 10, 12,  each 3-6 x [  with ~106 meas.]

      around the transition line                L = spatial lattice size,    for Nt=4

(β̃*, λ̃)
λ = 48Nf Nt κ4

Distribution of  on the transition lineΩR

=>  Binder cumulant    along the transition line in the  plane.BΩ
4 =

⟨Ω4
R⟩c

⟨Ω2
R⟩2

c
+ 3 (β, κ)

403x4 483x4History of ΩR = ReΩ



Study on Nt = 4 lattices
Kiyohara, Kitazawa, Ejiri, KK (WHOT-QCD),  PRD 104 (2021)

Results at Nt=4 with HPE up to NLO

Precision much improved over previous studies

Ns/Nt = LT ≥ 9 required for Z(2) FSS

 using Ns/Nt ≥ 9,  consistent with Z(2) value 1.604 within

(2) [ ] for Nt=4, Nf=2 

BΩ
4 = 1.630(24)(2) ≈ 1σ

λc = 0.00503(14) κc = 0.0603(4)
 (cf.) Ejiri+ PRD(2020):  with eff. NLOκc = 0.0640(10)

Z(2) FSS fits



Scope and convergence of HPE
Wakabayashi, Ejiri, KK, Kitazawa (WHOT-QCD),  PTEP (2022)

Are the effects of further higher orders of HPE really negligible?

Quark contribution to the effective action:

Bxy = ∑
μ

[(1 − γμ)Ux,μδy,x+ ̂μ + (1 + γμ)U†
y,μδy,x− ̂μ]

ln det M(κ) = Nsite ∑
n

Dnκn,

Dn = W(n) + ∑
m

Lm(Nt, n) = W(n) + L(Nt, n)

Dn =
−1

Nsiten
Tr[Bn] ≈

−1
Nsiten

⟨⟨η†Bnη⟩⟩noises

Wilson-type loops

Polyakov-type loops 
with m-windings

W(4) = 96Nc
̂P, W(6) = 256Nc(3Ŵrec + 6Ŵchair + 2Ŵcrown)

L1(Nt, Nt) =
4Nc2Nt

Nt
ReΩ̂

L1(Nt, Nt + 2) = 12Nc2Nt ∑
k

ReΩ̂k

We developed a method to separately evaluate  and  from 
by combing the results with various twisted boundary conditions. 

W(n) Lm(Nt, n) Dn

 

loops of length n noise average



Scope and convergence of HPE

,  in  and  take their maximum value 1 when we set 
             In this case, we can calculate  and  analytically up to high orders.
   =>  Worst convergent case of HPE can be studied by combining them.

Ŵi
̂Pj W(n) Lm(Nt, n) Ux,μ = 1

W(n) Lm(Nt, n)

Wakabayashi, Ejiri, KK, Kitazawa (WHOT-QCD),  PTEP (2022)

Convergence radius (lower bound for the  case)Ux,μ ≠ 1

d'Alembert's

Cauchy-Hadamard's

W(n)

Cauchy-Hadamard's

Convergence radius ,   i.e.  convergent up to the chiral limit.  

                 <=   free Wilson quarks when 

=>  HPE reliable at any mq,  when sufficiently high orders are taken.

⟶ 1/8
Ux,μ = 1

n → ∞

Nt = 26

Nt = 4
1/8

L(Nt, n) = ∑
m

Lm

W(n)



Scope and convergence of HPE
Wakabayashi, Ejiri, KK, Kitazawa (WHOT-QCD),  PTEP (2022)

For Nt=4:   [Kiyohara+ ('21)] 
      =>    LO may have at worst ≈10% error,   NLO good enough

For Nt=6:   [Cuteri+ ('22)],    [Ejiri+ ('20) using eff. pot.] 
      =>    NLO is ≥93% accurate.   remaining error can be removed by NNLO or higher

For Nt=8:   [Cuteri+ ('22)]       =>  NNLO needed for ≥95% accuracy

κc = 0.0603(4)

κc = 0.0877(9) 0.1286(40)

κc = 0.1135(8)

up to LO up to LO

up to NLO

NLO

W(n) L(Nt, n)
up to 

To which order we need to incorporate?    <=  depends on the value of 

Deviation due to truncation (in the worst convergent case):
κ



Effective method to incorporate high orders
Wakabayashi, Ejiri, KK, Kitazawa (WHOT-QCD),  PTEP (2022)

Calcuration of high order term becomes quickly difficult with increasing n. 
We extend the idea of the effective NLO method [Ejiri+ ('20)] to high orders.
Basic observation:  strong correlation of  Wilson/Polyakov-type loops among different n.

Distribution of  vs. the Polyakov loop L(Nt, n) Ω
qQCD simulation on 323x(6, 8),   blue/red slightly below/above ßtrans
normalized by the Uxµ=1 result L0
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Effective method to incorporate high orders
Wakabayashi, Ejiri, KK, Kitazawa (WHOT-QCD),  PTEP (2022)

L(Nt, n) ≈ L0(Nt, n) cn ReΩ̂

This linear correlation suggests us to approximate

known from Uxµ=1 slope 
measured  by 

simulation

W(n) ≈ W0(n) (dn
̂P + fn)

=>  Higher order effects can be effectively incorporated in the LO simulation by

β → β* = β +
1
6

Nf

nmax

∑
n=4

W0(n) dn κn λ → λ* = Nf Nt

nmax

∑
n=Nt

L0(Nt, n) cn κn

Extension to non-degenerate cases (Nf=2+1 etc.) straightforward.

 0.14

 0.142

 0.144

 0.146

 0.148

 0.15

 0.578  0.58  0.582  0.584

n=10

W
/W

0

P

though the correlation 
weaker than L(Nt,n)

PTEP 2022, 033B05 N. Wakabayashi et al.

Table 5. Coefficients dn and fn of Eq. (64) obtained on Nt = 6 and 8 lattices. The numbers in the first
parentheses are the statistical errors by the jackknife method, and those in the second parentheses are
the errors of the noise method.

n dn(Nt = 6) fn(Nt = 6) dn(Nt = 8) fn(Nt = 8)

4 1 0 1 0
6 1.3625(73)(12) − 0.4070(42)(7) 1.3366(66)(8) − 0.3922(39)(5)
8 1.4644(123)(11) − 0.6089(72)(6) 1.4256(96)(8) − 0.5869(57)(5)
10 1.3835(156)(10) − 0.6590(91)(6) 1.3433(117)(8) − 0.6367(70)(5)
12 1.2140(178)(9) − 0.6235(103)(5) 1.1752(130)(7) − 0.6025(78)(4)
14 1.0256(196)(9) − 0.5533(114)(5) 0.9825(141)(7) − 0.5303(85)(4)
16 0.8607(219)(9) − 0.4811(127)(5) 0.8052(153)(8) − 0.4512(92)(5)
18 0.7481(258)(10) − 0.4296(150)(6) 0.6698(173)(9) − 0.3870(103)(5)
20 0.7290(337)(12) − 0.4275(196)(7) 0.6071(219)(12) − 0.3606(131)(7)

nmax∑

n=Nt

∞∑

m=1

[
L+

m(Nt, n)e+mµ/T + L−
m(Nt, n)e−mµ/T ]

κn
c = L0(Nt, Nt ) κn

c,LO Re "̂. (67)

Corresponding to the effective theory discussed in Sect. 4.3 based on the strong correlation
among the Polyakov-type loops, let us assume that

L+
m(Nt, n) ≈ 1

2
L0

m(Nt, n) cn,m Re "̂, (68)

where cn, m is a constant to be determined by a Monte Carlo simulation. Then, Eq. (67) becomes

1
2

nmax∑

n=Nt

∞∑

m=1

L0
m(Nt, n)

(
cn,me+mµ/T + c∗

n,me−mµ/T )
κn

c = L0(Nt, Nt ) κn
c,LO. (69)

The leading-order calculation of Ref. [8] for Nt = 4 corresponds to the case where the terms
m ≥ 2 are absent. To judge the magnitude of the effect from higher-m terms, we again consider
the case of the worst convergence with Ux,µ = 1. In this case, because cn, m = 1, Eq. (69) reads

nmax∑

n=Nt

∞∑

m=1

L0
m(Nt, n)

(
cosh

mµ

T

)
κn

c = L0(Nt, Nt ) κn
c,LO. (70)

Though L0
m(Nt, n) decreases as m increases, cosh (mµ/T) may be large when µ/T is not small.

Approximating cosh (mµ/T) ≈emµ/T for mµ/T > 1, we find

µ

T
< ln

∣∣∣∣∣
L0

m(Nt, n)
L0

m+1(Nt, n)

∣∣∣∣∣ (71)

as the condition that the effect of the higher-m terms is small. In Fig. 14 we show the right-hand
side of Eq. (71) computed from Table 2. The circle, square, and triangle symbols are the results
for Nt = 6, 8, and 10, respectively. The black, red, and blue lines show m = 1, 2, and 3. When
µ/T exceeds these values, the effects of higher-m terms should be incorporated.

7. Summary and conclusions
We studied the convergence and the valid range of the hopping parameter expansion in deter-
mining the critical point (critical quark mass) of finite-temperature QCD with heavy quarks
at which the first-order deconfinement transition in the heavy quark limit turns into crossover
at intermediate quark masses. Adopting the standard plaquette gauge action and the standard
Wilson quark action, we expand the effective quark action ln det M by the hopping parameter
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Fig. 9. As Fig. 8 but on a 323 × 8 lattice at β = 6.0320 (blue) and 6.0660 (red). The top left, top middle,
…, bottom right panels show the results of n = 10, 12, …, 20, respectively.

Table 3. Coefficients cn of Eq. (51) for n = Nt–20 on Nt = 6
and 8 lattices.

Nt = 6 Nt = 8

c6 1
c8 0.8112(20)(7) 1
c10 0.6280(15)(3) 0.8327(114)(95)
c12 0.4736(29)(15) 0.6408(36)(27)
c14 0.3609(26)(11) 0.4841(22)(10)
c16 0.3106(25)(10) 0.3616(21)(6)
c18 1.0159(90)(33) 0.2679(16)(3)
c20 − 0.02771(57)(13) 0.2020(13)(2)

n and Nt. Minimizing χ2 =
∑

i[(L(i) − L0(Nt, n ) cn Re #̂(i))/$L(i)]2, with L(i) the result of
L(Nt, n ) on the ith configuration and $L(i) the error of L(i) due to the noise method, the
best value of cn is given by

cn = 1
L0(Nt, n )

⟨L(Nt, n )Re #̂/$L2⟩
⟨(Re #̂)2/$L2⟩

. (62)

The error propagation from $L to cn is given by

$cn = 1√
Nconf |L0(Nt, n )|

〈
(Re #̂)2

$L2

〉−1/2

,

where Nconf is the number of configurations.
The results of the fits are shown by the green lines in Figs. 8 and 9. We summarize the re-

sults for cn in Table 3, in which the numbers in the first parentheses are the statistical errors
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Study on Nt = 6 lattices

Nt=6,  Ns/Nt = LT = 6, (7,) 8, 9, 10, 12, 15  ongoing

Status of  with NLO:                              for  Nt=6,  Nf=2, NLOBΩ
4 λ = 128Nf Nt κ6

Ashikawa+ (WHOT-QCD),  ongoing

Preliminary:

  with Ns/Nt = 12–15        (cf.)  Z(2) value = 1.604

  =>   NLO  =>   up to 20th order

      (cf.)   by a full QCD simulation [Cuteri+ ('22)]

BΩ
4 ∼ 1.61 − 1.62

λc ∼ 0.00097 − 0.00101 κc ∼ 0.093 κc ∼ 0.0905
κc = 0.0877(9)



Nt = 4 vs. Nt = 6

Violation of FSS larger on finer lattice   =>  larger Ns/Nt = LT required

Ashikawa+ (WHOT-QCD),  ongoing

Origin of the violation:
Contamination of remnant Z(3) distribution 
from mq=∞ ?
Mixing with energy-like op. in the scaling ??



Conclusion & outlook
HPE provides us with a reliable and powerful way to study QCD 
with heavy quarks

Convergent up to chiral limit + enable large Ns/Nt simul.'s + analytic in Nf
up to  of Nt=4, Nf=2 :  LO: ≥90% / NLO: ≥99% accurate
around  of Nt=6, Nf=2 :  NLO: ≥93% accurate

           Higher orders needed to remove remaining truncation error and for Nt≥8.

Effective method to incorporate high orders developed                
=>   reduce simulation cost largely

At Nt=4,  Ns/Nt≥9 needed for Z(2) FSS.
     =>  NLO study of B4Ω :   for Nf=2

At Nt=6, larger violation of FSS, require larger Ns/Nt                     
Preliminary with Ns/Nt≥12,   including high orders.                        

Nt=6 ongoing:  more statistics.

κc
κc

κc = 0.0603(4)

κc ∼ 0.090

HPE powerful also at finite densities:  in progress



We miss our best friend+collaborator  

Yusuke Taniguchi 

who passed away on July 22, 2022.

1968–2022
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Study on Nt = 4 lattices

Comparison with LO analysis      =>  effects of NLO corrections
Kiyohara, Kitazawa, Ejiri, KK (WHOT-QCD),  PRD 104 (2021)

LO ≈ NLO  with Ns/Nt=LT ≥ 9

Shift due to NLO is small ,   suggesting LO dominance around  for Nt=4

                                                              =>  previous Nt=4 LO results seems OK
( ≈ 2.6%) κc



backup slides
Kiyohara, Kitazawa, Ejiri, KK (WHOT-QCD),  PRD 104 (2021)

term of VðΩR; λc; LTÞ such that VðΩð1Þ; λc; LTÞþ
VðΩð2Þ; λc; LTÞ ¼ 0, where Ωð1Þ and Ωð2Þ (> Ωð1Þ) are
the values of ΩR at the two local minima of
VðΩR; λc; LTÞ. No further adjustments are made in the
figure. The error bands do not include the uncertainty of the
additive constant. The lower panel is an enlargement of the
region indicated by the dotted rectangle in the upper panel.
From Fig. 12, we find that the numerical results for LT ¼
8–12 agree almost completely within the errors with
the scaling relation Eq. (45). This result nicely supports
the FSS in the Zð2Þ universality class at the CP. From the
upper panel of Fig. 12, we note that the effective potential
for LT ¼ 6 shows a clear deviation from the results for
larger volumes at ΩR ≪ Ωð1Þ and ΩR ≫ Ωð2Þ, while it
agrees well with them in the range Ωð1Þ ≲ ΩR ≲ Ωð2Þ. This
suggests that the deviation from the Zð2Þ FSS by lattices
with small LT, discussed in Sec. IV B, is due to that in the
tails of the distribution pðΩRÞ for small LT.

B. Gap between the two minima

Using Eq. (13), the argument of Sec. VA on the effective
potential can be extended away from the CP along the
transition line. In this subsection, we study the gap between
the two local minima of VðΩR; λc; LTÞ,

ΔΩ ¼ Ωð2Þ −Ωð1Þ: ð46Þ

According to Eq. (15), this quantity should behave around
the CP as

ΔΩðλ; LTÞ ¼ ðLTÞyh−3ΔΩ̃ððλ−λcÞðLTÞ1=νÞ; ð47Þ

provided that pðΩRÞ obeys the FSS.
In Fig. 13 we show the λ dependence ofΩð1Þ andΩð2Þ. As

seen from Fig. 10, a clear two-peak structure of pðΩRÞ
disappears when λ exceeds some value depending on LT.
Even before the disappearance of the two peaks, identi-
fication of local maxima of pðΩRÞ becomes unstable
because of statistical fluctuations. In Fig. 13 we thus
truncate the plots for Ωð1Þ and Ωð2Þ at finite λ. The shaded
areas in the figure represent statistical errors estimated by
the jackknife method, for which we repeat the analysis of
Ωð1;2Þ for pðΩRÞ obtained in each jackknife sample with
the smearing width of ΔΩR

¼ 0.002.3 As shown in
Appendix B, ΔΩR

dependence of these results is well
suppressed at this ΔΩR

.

From Fig. 13 we extract ΔΩ as a function of λ. In Fig. 14
we show ΔΩ for five different volumes. To see the FSS, the
vertical and horizontal axes are adjusted according to
Eq. (47), where the Zð2Þ values 3−yh ¼ 0.518 and
ν ¼ 0.630, and λc ¼ 0.00503 determined in the previous
section are used. The figure shows that, for a wide range of
λ−λc and LT, the results of ΔΩ obtained on different
volumes are on top of each other within the errors. This
supports the FSS of pðΩRÞ around the peak positions over a
wide range of LT and λ.
It is interesting to note that the scaling behavior of ΔΩ is

observed even at LT ¼ 6, although the FSS of BΩ
4 is

violated already at LT ¼ 8. As discussed in the previous
subsection, we may understand this when the violation of
the FSS for BΩ

4 is due to the violation in the tails of the
distribution function pðΩRÞ. As seen in Fig. 12, VðΩRÞ at
various volumes agrees well for Ωð1Þ ≲ Ω≲ Ωð2Þ, even for
small values of LT. As the higher-order cumulants are

FIG. 13. Positions of peaks of the distribution function pðΩRÞ
measured on the transition line.

FIG. 14. Scaling of the gap ΔΩ around Tc.

3We see that the errors in Fig. 13 become occasionally large.
We find that this is due to statistical oscillations in the shape of
pðΩRÞ around the peak: Though the oscillations are within the
statistical errors, the peak position in each jackknife sample can
jump discontinuously when oscillation appears just at the peak
position as we vary λ. This makes the resulting jackknife error
large there. From this observation, we think that these large errors
are overestimated.
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BΩ
4 ðλ; LTÞ ¼ ðb4 þ cðλ − λcÞðLTÞ1=νÞð1þ dðLTÞy t−y hÞ:

ð43Þ

To investigate the effect of this possible mixing, we try fits
of BΩ

4 based on Eq. (43). We use the values of BΩ
4 at three λ

for the fits to increase the number of data points. We find
that the six-parameter fits with Eq. (43) with the fitting
parameters b4, λc, ν, c, d, y t − y h are quite unstable,
suggesting that χ2 has many local minima. The model
space of Eq. (43) would be too large against the data. As a
next trial, we perform five-parameter fits with Eq. (43) by
fixing y t − y h ¼ −0.894. In this case, we find that χ2 still
has many local minima, and χ2=dof becomes larger
compared with the four-parameter fit. It is also found that
the value of d is consistent with zero within the error for all
trials with the variation of λ values. This suggests that the
mixing of the energylike observable in ΩR is negligible
around the CP in the heavy quark region.

D. Nf dependence

In Table IV, we summarize our final results for the
location of the CP, ðβc; κcÞ. In the table, we also show the
results forNf ¼ 1 and 3. We note that theNf dependence of
the HPE is trivial at the LO in the sense that Nf enters the
action Eq. (32) at this order only through the combination
λ ¼ 64NcNfκ4 after the replacement β → β%. Therefore, λc
does not depend on Nf . At the LO, this allows us to obtain
the value of κc for various Nf from the value of κc at Nf ¼ 2
[29]. Because such a simple scaling is no longer applicable
at the NLO, we made individual numerical analyses at
Nf ¼ 1 and 3. From Table IV, we find that the results of λc
are almost insensitive to Nf . This means that the NLO
effects on λc are small.

V. DISTRIBUTION FUNCTION OF ΩR

In this section, we study the scaling behavior of the
distribution function pðΩRÞ to further investigate the
consistency with the Zð2Þ universality class around the CP.

A. Scaling of distribution function

Let us first focus on the LT dependence of pðΩRÞ at the
CP. In the following, instead of pðΩRÞ itself, we study the
effective potential defined from pðΩRÞ,

VðΩR; λ; LTÞ ¼ − lnpðΩRÞλ;LT; ð44Þ

as this quantity is more convenient in comparing the results
at different LT [27,29]. From Eq. (14), the LT dependence
of VðΩR; λ; LTÞ at the CP will be described by a single
function Ṽðx Þ as

VðΩR; λc; LTÞ ¼ ṼððΩR − hΩRiÞðLTÞ3−y hÞ; ð45Þ

up to an additive constant, where hΩRi is subtracted from
ΩR to adjust the center of the distribution.
To see if the scaling behavior of Eq. (45) is satisfied,

we show in Fig. 12 the effective potential VðΩR; λc; LTÞ
at the CP obtained at five values of LT, as a function
of ðΩR − hΩRiÞðLTÞ3−y h , where we set 3 − y h ¼ 0.518.
For the figure, we adjust the arbitrary constant

TABLE IV. Location of the critical point ðβc; κcÞ for variousNf .
For λc, the first parentheses are for statistical errors and the second
parentheses are for systematic errors from the fit as discussed in
Sec. IV B. The errors for βc and κc include the systematic errors.

Nf βc κc λc

1 5.68446(22) 0.0714(5) 0.00498(14)(2)
2 5.68453(22) 0.0602(4) 0.00503(14)(2)
3 5.68456(21) 0.0544(4) 0.00505(14)(2)

FIG. 12. Effective potential VðΩRÞ ¼ − lnpðΩRÞ. Bottom
panel is an enlargement of the region enclosed by a dotted
rectangle in the top panel.
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Table 2. Polyakov-type loop expansion terms L0
m(Nt, n) for the case Ux,µ = 1 .

L0
1(4, 4) 48 L0

1(10, 10) 1228.8 L0
1(18, 18) 174762.67

L0
1(4, 6) 1728 L0

1(10, 12) 331776 L0
1(18, 20) 160432128

L0
1(4, 8) 45792 L0

1(10, 14) 52862976 L0
1(18, 22) 75497472000

L0
1(4, 10) 645120 L0

1(10, 16) 6258180096 L0
1(18, 24) 2.36626 × 1013

L0
1(4, 12) −26224128 L0

1(10, 18) 5.99330 × 1011 L0
1(18, 26) 5.50232 × 1015

L0
1(4, 14) −3201067008 L0

1(10, 20) 4.87727 × 1013 L0
1(18, 28) 1.01809 × 1018

L0
1(4, 16) −2.14087 × 1011 L0

1(10, 22) 3.47446 × 1015 L0
1(18, 30) 1.57315 × 1020

L0
1(4, 18) −1.19007 × 1013 L0

1(10, 24) 2.20156 × 1017 L0
1(20, 20) 629145.6

L0
1(4, 20) −6.00757 × 1014 L0

1(10, 26) 1.24531 × 1019 L0
1(20, 22) 717225984

L0
1(4, 22) −2.84486 × 1016 L0

1(10, 28) 6.20798 × 1020 L0
1(20, 24) 4.11140 × 1011

L0
1(4, 24) −1.28105 × 1018 L0

1(10, 30) 2.59861 × 1022 L0
1(20, 26) 1.54445 × 1014

L0
1(4, 26) −5.50874 × 1019 L0

1(12, 12) 4096 L0
1(20, 28) 4.24543 × 1016

L0
1(4, 28) −2.25576 × 1021 L0

1(12, 14) 1622016 L0
1(20, 30) 9.17892 × 1018

L0
1(4, 30) −8.69402 × 1022 L0

1(12, 16) 360603648 L0
1(22, 22) 2287802.18

L0
1(6, 6) 128 L0

1(12, 18) 57416810496 L0
1(22, 24) 3170893824

L0
1(6, 8) 11520 L0

1(12, 20) 7.19497 × 1012 L0
1(22, 26) 2.17478 × 1012

L0
1(6, 10) 716544 L0

1(12, 22) 7.51820 × 1014 L0
1(22, 28) 9.64167 × 1014

L0
1(6, 12) 35891712 L0

1(12, 24) 6.80443 × 1016 L0
1(22, 30) 3.09123 × 1017

L0
1(6, 14) 1464910848 L0

1(12, 26) 5.46987 × 1018 L0
1(24, 24) 8388608

L0
1(6, 16) 43817011200 L0

1(12, 28) 3.96931 × 1020 L0
1(24, 26) 13891534848

L0
1(6, 18) 3.17933 × 1011 L0

1(12, 30) 2.62442 × 1022 L0
1(24, 28) 1.12307 × 1013

L0
1(6, 20) −8.54676 × 1013 L0

1(14, 14) 14043.43 L0
1(24, 30) 5.80075 × 1015

L0
1(6, 22) −9.18906 × 1015 L0

1(14, 16) 7667712 L0
1(26, 26) 30973321.85

L0
1(6, 24) −6.76634 × 1017 L0

1(14, 18) 2263154688 L0
1(26, 28) 60397977600

L0
1(6, 26) −4.25366 × 1019 L0

1(14, 20) 4.64539 × 1011 L0
1(28, 28) 115043766.9

L0
1(6, 28) −2.43350 × 1021 L0

1(14, 22) 7.33145 × 1013 L0
1(28, 30) 2.60919 × 1011

L0
1(6, 30) −1.30192 × 1023 L0

1(14, 24) 9.47783 × 1015 L0
1(30, 30) 429496729.6

L0
1(8, 8) 384 L0

1(14, 26) 1.04744 × 1018

L0
1(8, 10) 64512 L0

1(14, 28) 1.01916 × 1020 L0
1(8, n) = −L0

2(4, n)
L0

1(8, 12) 6842880 L0
1(14, 30) 8.91247 × 1021 L0

1(12, n) = −L0
2(6, n) = L0

3(4, n)
L0

1(8, 14) 563816448 L0
1(16, 16) 49152 L0

1(16, n) = −L0
2(8, n) = −L0

4(4, n)
L0

1(8, 16) 38644455168 L0
1(16, 18) 35389440 L0

1(18, n) = L0
3(6, n)

L0
1(8, 18) 2.27266 × 1012 L0

1(16, 20) 13373669376 L0
1(20, n) = −L0

2(10, n) = L0
5(4, n)

L0
1(8, 20) 1.15216 × 1014 L0

1(16, 22) 3.43220 × 1012 L0
1(24, n) = −L0

2(12, n) = L0
3(8, n)

L0
1(8, 22) 4.87450 × 1015 L0

1(16, 24) 6.64230 × 1014 = −L0
4(6, n) = −L0

6(4, n)
L0

1(8, 24) 1.48769 × 1017 L0
1(16, 26) 1.03670 × 1017 L0

1(28, n) = −L0
2(14, n) = L0

7(4, n)
L0

1(8, 26) 3.87212 × 1017 L0
1(16, 28) 1.36624 × 1019 L0

1(30, n) = L0
3(10, n) = L0

5(6, n)
L0

1(8, 28) −4.23050 × 1020 L0
1(16, 30) 1.57009 × 1021

L0
1(8, 30) −4.60409 × 1022

3.2 Alternative method to calculate W0(n) and L0
m(Nt, n)

In Sect. 2.1 we showed that the values of Lm(Nt, n) for individual winding numbers m can be
calculated by combining Dθ

n obtained with various twisted boundary conditions as in Eq. (25).
For the case Ux, µ = 1, because of the uniformity of the system one finds by extending this idea
that W0(n) and L0

m(Nt, n) are calculable on a lattice with temporal extent any divisor of Nt.
Pursuing this idea leads to the conclusion that the calculation can be carried out on the N3

s × 1
lattice by combining Dθ

n with θ = πw/NtY, w = 0, 1, 2, …, 2NtY.
There is no reason not to apply the same idea to all spatial directions. Then, after folding all

the spatial directions one finally finds that the calculation is feasible just on the 14 lattice. Since
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Table 1. Wilson loop terms W0(n) for the case Ux,µ = 1.

W0(4) 288 W0(20) 1.54422361 × 1014 W0(36) −5.58410362 × 1027

W0(6) 8448 W0(22) 2.83682900 × 1015 W0(38) −2.91018925 × 1029

W0(8) 245952 W0(24) −2.40028584 × 1016 W0(40) −1.50223497 × 1031

W0(10) 7372800 W0(26) −6.88836562 × 1018 W0(42) −7.71380102 × 1032

W0(12) 225232896 W0(28) −5.41133954 × 1020 W0(44) −3.95168998 × 1034

W0(14) 6906175488 W0(30) −3.39122203 × 1022 W0(46) −2.02386871 × 1036

W0(16) 208431502848 W0(32) −1.93668514 × 1024 W0(48) −1.03783044 × 1038

W0(18) 6.00259179 × 1012 W0(34) −1.05424635 × 1026 W0(50) −5.33468075 × 1039

L0
1(Nt, Nt ) = 12 × 2Nt

Nt
, L0

1(Nt, Nt + 2) = 36 × 2Nt (Nt − 1). (33)

For the present case of Ux,µ = 1, we can also show that

L0
m(Nt, n ) = (−1)m−1L0

1(mNt, n ). (34)

Using this property, we can calculate some L0
m for m > 1 by substituting L0

1 from Eq. (33).
We calculate Dn for Ux,µ = 1 on a lattice with various Nt and sufficiently large Ns. Since the

link variables are uniform in this case, calculation of one diagonal element for the position index
is sufficient. For the color and spinor indexes, we take their trace. More concretely, we prepare
a pseudo-fermion field e⃗i having a non-vanishing element only at a position, and at the ith
combination of the color and spinor indexes we calculate the diagonal element [Bn ]ii = e⃗ †

i Bn e⃗i

for all combinations of i. We then calculate Dn from
∑4Nc

i=1[Bn ]ii.
To compute Dn up to n = nmax on lattices with Nt = 4, 6, …, nmax/2 + 1, the spatial lattice size

Ns = nmax + 2 is sufficient. We also compute D+
n with the periodic boundary condition. For n <

2Nt and n < Ns, W0(n) is given by Eq. (19). We compute Dn and D+
n on a 563 × 28 lattice. The

results of W0(n) are listed in Table 1 up to n = 50. The sum of the Polyakov-type loop terms,

L0(Nt, n ) =
∞∑

m=1

L0
m(Nt, n ), (35)

is then obtained by L0(Nt, n) = Dn(Nt) − W0(n). The terms corresponding to each loop in
W(n) and Lm(Nt, n) can take both positive and negative signs depending on the product of the
gamma matrices of the hopping term in Eq. (4), and, in the case of Polyakov-type loops, also
on the temporal boundary condition. The total sign of W(n) and Lm(Nt, n) is determined by
which sign is dominant.

For each of the Polyakov-type loop terms L0
m(Nt, n ), we measure Dn and D+

n up to n = 30 for
the case Ux,µ = 1 on lattices with Ns = 32 and Nt = 4–24. We first calculate L0

1(Nt, n ) for n <

3Nt by Eq. (20) for each Nt, and then L0
m(Nt, n ) for m ≥ 2 as much as possible by Eq. (34). When

n < 5Nt, we also have the equation L0
1(Nt, n ) = (Dn − D+

n )/2 − L1(2Nt, n ), and when n < 7Nt,
L0

1(Nt, n ) = (Dn − D+
n )/2 − L0

1(2Nt, n ) − L0
1(3Nt, n ). By repeating this procedure, L0

m(Nt, n ) is
calculated for all values of m. The results for n ≤ 30 are summarized in Table 2, which also
gives the theoretical value of Eq. (33) when available. We find that, for these values of (Nt, n),
the term with m = 1 is dominant and the contributions of the terms with m = 2–4 are small.
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Fig. 11. Effective critical point κc, eff in two-flavor QCD for Nt = 6 as a function of nmax. The black circle
and red square symbols are for κc, LO obtained on a 243 × 6 and a 323 × 6 lattice, respectively.

Table 4. Effective critical point κc, eff in degenerate
Nf -flavor QCD on Nt = 6 lattices.

N3
s × Nt Nf = 1 Nf = 2 Nf = 3

243 × 6 0.1228(18) 0.1134(18) 0.1080(17)
323 × 6 0.1183(25) 0.1090(25) 0.1037(24)

It is easy to generalize the argument to the case of non-degenerate quarks. For (2+1)-flavor
QCD, denoting the hopping parameter for the up and down quarks as κud and that for the
strange quark as κs, the critical line in the (κud , κs) plane is obtained by finding (κc, ud , κc, s) that
satisfies the following equation:

2
nmax∑

n=Nt

L0(Nt, n) cnκ
n
c,ud +

nmax∑

n=Nt

L0(Nt, n) cnκ
n
c,s = 2L0(Nt, Nt ) κNt

c,LO, (63)

where κc, LO is the leading-order critical point in two-flavor QCD. The critical lines calculated
with nmax = 6–20 are shown in Fig. 12 using κc, LO obtained on a 243 × 6 (left) and a 323 × 6
(right) lattice. The critical line converges well when nmax ! 10.

5.4 Correlation among Wilson loops
Finally, we study the correlation among Wilson loops. Figure 13 shows the double distribution
of W(n)/W0(n) and the plaquette P̂ measured at β = 5.881 and 5.900 on the 323 × 6 lattice.
In the top left, top middle, …, bottom right panels, the rrespective esults for n = 4, 6, 8, …,
20 are shown. The top left panel shows that the numerical result of W(4)/W0(4) is equal to the
plaquette P̂ within the error of the noise method. We find that, though the W(6)/W0(6) data (the
top middle panel) shows a strong linear correlation with P̂, the correlation becomes gradually
weaker as n increases. Similar results are obtained in the calculation on the 323 × 8 lattice.

For small n, say n ! 10, for which the linear correlation with P̂ is strong, we may approximate
W(n) as

W (n) ≈ W 0(n) (dnP̂ + fn), (64)
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Fig. 14. Upper bound of µ/T such that higher-m terms are small, as given in Eq. (71).

κ around the heavy quark limit κ = 0, with M(κ) the Wilson quark kernel. Non-vanishing con-
tributions to the expansion terms are given by closed loops of the hopping term B = −∂M/∂κ.
We classified the closed loops by the winding number m in the temporal direction, and decom-
posed each expansion term into a Wilson loop term (m = 0) and Polyakov-type loop terms (m
̸= 0). We developed a general method to calculate Wilson and Polyakov-type loop terms from
the expansion terms with various twisted boundary conditions in the temporal direction.

To study the convergence of the hopping parameter expansion, we first studied the case of the
worst convergence in which all the gauge link variables are unit matrices and thus the Wilson
loops and the Polyakov-type loops get their maximum values. Our explicit calculation of the
Wilson and Polyakov-type loop terms up to the 100th order of the hopping parameter expan-
sion shows that the hopping parameter expansion is convergent up to around the chiral limit of
free Wilson quarks, κ = 0.125, meaning that the convergence radius of the hopping parameter
expansion is not small.

In practice, however, we need to truncate the expansion at some finite order and have to take
into account the systematic error due to the truncation. We thus studied the issue of the trunca-
tion error of the hopping parameter expansion, focusing on determining the critical point κc in
heavy quark QCD. In the case of worst convergence, we found that the truncation error on Nt

= 4 lattices is well under control up to around κ ∼ 0.1, matching the previous next-to-leading-
order calculations of κc for Nt = 4 [7,8]. We also found that the truncation error increases as Nt

increases, such that, already for Nt = 6, significant effects from higher-order terms exist around
κc determined by a next-to-leading-order calculation.

To extend the valid range of the hopping parameter expansion we thus revisited the effective
theory of Refs. [8,9 ], which incorporates the next-to-leading effect into the leading-order calcu-
lation, and extended it to higher orders of the hopping parameter expansion. We also discussed
that the effect of Wilson loop terms can be represented by a shift of coupling parameters in
the gauge action. The effective theory is based on the strong correlation between the leading-
order Polyakov loop and next-to-leading bent Polyakov loops. By a Monte Carlo simulation,
we showed that the strong correlation also holds for higher-order Polyakov-type loops. We thus
extended the effective theory to include higher-order terms of the hopping parameter expan-
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Table 5. Coefficients dn and fn of Eq. (64) obtained on Nt = 6 and 8 lattices. The numbers in the first
parentheses are the statistical errors by the jackknife method, and those in the second parentheses are
the errors of the noise method.

n dn(Nt = 6) fn(Nt = 6) dn(Nt = 8) fn(Nt = 8)

4 1 0 1 0
6 1.3625(73)(12) − 0.4070(42)(7) 1.3366(66)(8) − 0.3922(39)(5)
8 1.4644(123)(11) − 0.6089(72)(6) 1.4256(96)(8) − 0.5869(57)(5)
10 1.3835(156)(10) − 0.6590(91)(6) 1.3433(117)(8) − 0.6367(70)(5)
12 1.2140(178)(9) − 0.6235(103)(5) 1.1752(130)(7) − 0.6025(78)(4)
14 1.0256(196)(9) − 0.5533(114)(5) 0.9825(141)(7) − 0.5303(85)(4)
16 0.8607(219)(9) − 0.4811(127)(5) 0.8052(153)(8) − 0.4512(92)(5)
18 0.7481(258)(10) − 0.4296(150)(6) 0.6698(173)(9) − 0.3870(103)(5)
20 0.7290(337)(12) − 0.4275(196)(7) 0.6071(219)(12) − 0.3606(131)(7)

nmax∑

n=Nt

∞∑

m=1

[
L+

m(Nt, n)e+mµ/T + L−
m(Nt, n)e−mµ/T ]

κn
c = L0(Nt, Nt ) κn

c,LO Re "̂. (67)

Corresponding to the effective theory discussed in Sect. 4.3 based on the strong correlation
among the Polyakov-type loops, let us assume that

L+
m(Nt, n) ≈ 1

2
L0

m(Nt, n) cn,m Re "̂, (68)

where cn, m is a constant to be determined by a Monte Carlo simulation. Then, Eq. (67) becomes

1
2

nmax∑

n=Nt

∞∑

m=1

L0
m(Nt, n)

(
cn,me+mµ/T + c∗

n,me−mµ/T )
κn

c = L0(Nt, Nt ) κn
c,LO. (69)

The leading-order calculation of Ref. [8] for Nt = 4 corresponds to the case where the terms
m ≥ 2 are absent. To judge the magnitude of the effect from higher-m terms, we again consider
the case of the worst convergence with Ux,µ = 1. In this case, because cn, m = 1, Eq. (69) reads

nmax∑

n=Nt

∞∑

m=1

L0
m(Nt, n)

(
cosh

mµ

T

)
κn

c = L0(Nt, Nt ) κn
c,LO. (70)

Though L0
m(Nt, n) decreases as m increases, cosh (mµ/T) may be large when µ/T is not small.

Approximating cosh (mµ/T) ≈emµ/T for mµ/T > 1, we find

µ

T
< ln

∣∣∣∣∣
L0

m(Nt, n)
L0

m+1(Nt, n)

∣∣∣∣∣ (71)

as the condition that the effect of the higher-m terms is small. In Fig. 14 we show the right-hand
side of Eq. (71) computed from Table 2. The circle, square, and triangle symbols are the results
for Nt = 6, 8, and 10, respectively. The black, red, and blue lines show m = 1, 2, and 3. When
µ/T exceeds these values, the effects of higher-m terms should be incorporated.

7. Summary and conclusions
We studied the convergence and the valid range of the hopping parameter expansion in deter-
mining the critical point (critical quark mass) of finite-temperature QCD with heavy quarks
at which the first-order deconfinement transition in the heavy quark limit turns into crossover
at intermediate quark masses. Adopting the standard plaquette gauge action and the standard
Wilson quark action, we expand the effective quark action ln det M by the hopping parameter
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