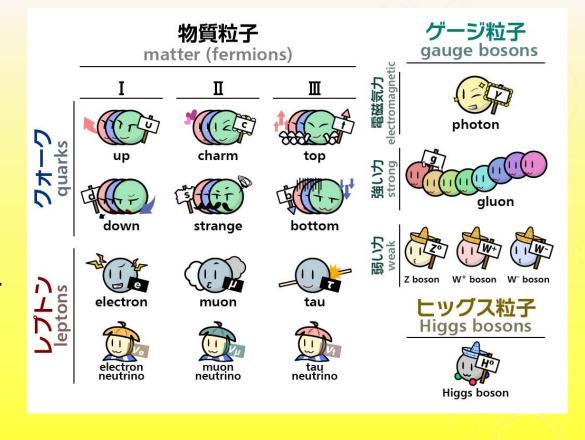


~共同研究者募集中~

2023年6月27日(火) 飯田崇史(筑波大)

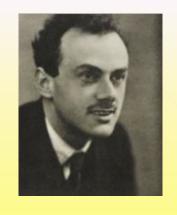
<u>もくじ</u>

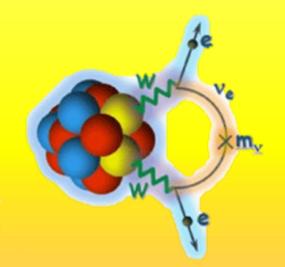

- 1. ニュートリノを放出しない二重ベータ崩壊
- 2. PIKACHU実験
- 3. 高純度GAGG結晶の開発
- 4. 今後の展望

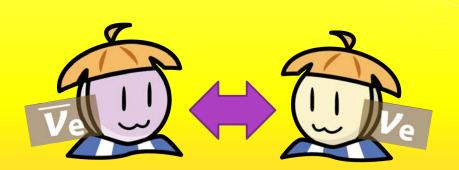
ニュートリノとは

標準理論で記述される、 物質を構成する素粒子 の一種

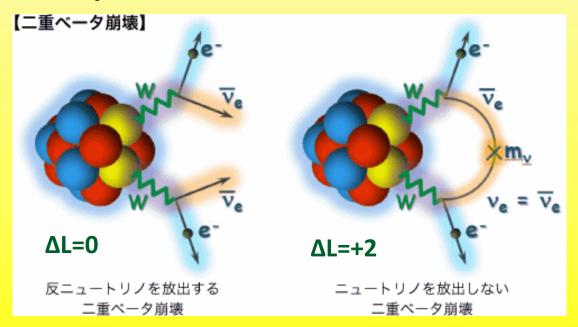
電荷を持っていない電子 みたいなもの


不思議な粒子?


Fermionで唯一電荷を持たない 非常に小さい質量(電子の1/10万以下) ニュートリノ振動によって世代(フレーバー)が変わる 左巻きしか観測されていない


ニュートリノのマヨラナ性

- Is neutrino Dirac particle or Majorana particle?
- Observation of Neutrino-less double beta decay $(0\nu\beta\beta)$ would prove Majorana nature of neutrinos $(\nu_e \leftrightarrow \nu_e)$.
- マヨラナ性は、電荷を持たないニュートリノのみに許される特権。
- ・ これが分かると宇宙最大の謎の一つが解明される(かも)。



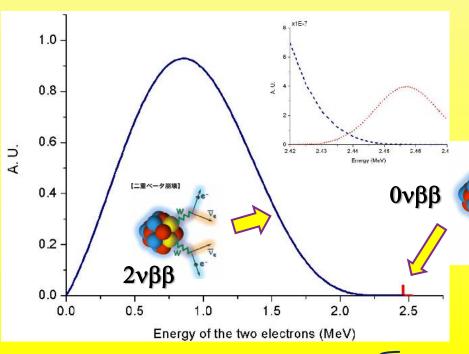
宇宙の物質起源(レプトジェネシス)

- 宇宙は物質(バリオン数B>O)で構成されている。
- ・ビッグバン直後、粒子一反粒子が同数作られたと考えられている。その後、粒子優勢に。何故?
- バリオン数の非平衡はニュートリノが作ったとする説 (レプトジェネシス)は、これを説明する有望な理論。
- 宇宙極初期に非常に重たい(m_R>10¹⁹ GeV) 右巻き ニュートリノが崩壊し、レプトンCPの破れからレプトン 数Lの非平衡を生み出す。
- ・スファレロン過程、インスタントン効果等のB-Lを保存するプロセスを経て、レプトン数がバリオン数に転換。
- 今のバリオン数が正の宇宙が出来上がる。

Double beta decay

• Neutrino-less double beta decay $(0\nu\beta\beta)$ is only practical way to prove Majorana neutrino.

$$2\nu\beta\beta$$
: (Z, A) \rightarrow (Z+2, A) + 2 e⁻ + 2 ν_e


Second order process of weak interaction.

$$0\nu\beta\beta$$
: (Z, A) \rightarrow (Z+2, A) + 2 e⁻¹

Beyond the SM (lepton number violation)

Double beta decay experiment

- 二重ベータ崩壊で出てくる電子のエネルギーを測定する。
- SMで起こる2vββでも非常にレア(T_{1/2} ~ 10²⁰ y)

- ✓ 0vββは、ニュートリノ が出ないのでQ値に ピークを作る。
- ✓ 2νββは、通常のベータ崩壊同様の連続的な分布。

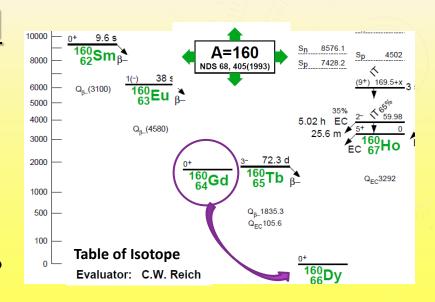
実験成功のカギ

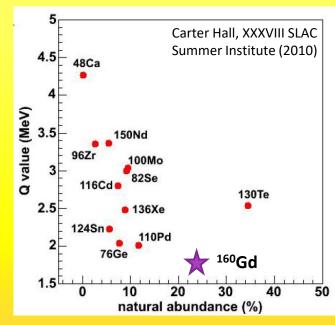
- 1. 大ボリューム
- 2. 極低BG環境
- 3. 高エネルギー分解能

Double beta decay of 160Gd

ガドリニウム(Gd)は原子番号64、周期表 第3族に属する希土類元素のランタノイド。 原子量は 157.3。

- ¹⁶⁰Gdは二重ベータ崩壊核の一つ。
 - ✓ Q値= 1730 keV
 - ✓ 自然存在比= 21.8%
- 0νββ、2νββ共に未発見
- 二種の2νββ半減期予想が約一桁 の違い。

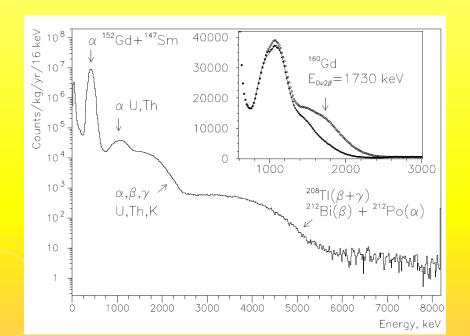



$$T_{1/2}^{2\nu} \sim 6 \times 10^{21} \, \text{fm}$$
 [1]

$$T_{1/2}^{2\nu} \sim 8 \times 10^{20}$$
 年 [2]

[1] J. G. Hirsch et al., Phys.Rev. C 66, 015502 (2002)

[2] N. Hinohara et al., Phys. Rev. C 105, 044314 (2022)


Previous research in Ukraine

• 160Gd のββ探索では、2インチのGSOシンチレータを用いたウクライナでの実験[3]が世界一。発光量は1万光子/MeV弱。

[3] F.A.Danevich et al., Nucl. Phys. A, Vol. 694, Iss. 1-2, 2001, Pages 375-391

- 結晶内のU/Th系列不純物からのα線が問題となっていた模様。
- サイズやバックグラウンド(BG)レベルを改善し、感度を一桁ちょっと 高めれば、2νββを発見出来る可能性がある。

現在の ¹⁶⁰ Gd二重ベータ最高感度			
検出器	GSOシンチレータ		
¹⁶⁰ Gdの量	100 g		
データ取得日数	約2年		
主要BG	U/Thのアルファ PMTのガンマ		
0∨半減期リミット※	> 2.3 × 10 ²¹ 年		
2v半減期リミット※	>2.1×10 ¹⁹ 年		

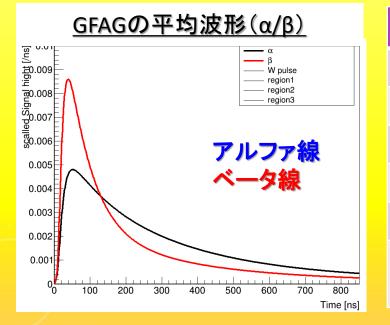
The PIKACHU experiment

Pure Inorganic scintillator experiment in KAmioka for CHallenging Underground sciences

Ce:Gd₃Ga₂Al₃O₁₂ (GAGG)結晶を用いた¹⁶⁰Gdの二重ベータ実験を行う。

名前	所属	担当
飯田崇史	筑波大	高純度結晶開発、他
大森匠	筑波大∙M2	結晶性能評価
日野原伸生	筑波大CCS	理論への反映
吉野将生	東北大金研	現地作業、データ取得
鎌田圭	東北大金研	結晶育成、加工
庄子育宏	東北大金研	結晶育成、加工
寺島亜寿紗	東北大ν	地下実験室、現地作業
水越彗太	JAXA	データ解析(機械学習)
伏見賢一	徳島大	低BGシールド
細川佳志	東大ICRR	Geによる原料測定
中島恭平	福井大学	結晶内不純物の評価

PIKACHUの強み

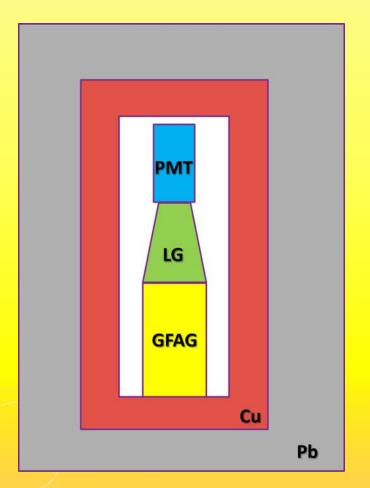

大型結晶: 1結晶で先行研究の3~4倍。3つ置けば簡単に一桁増。

大発光量:数倍の発光量で、分解能が改善。

粒子識別能: α線とβ線は波形情報からほぼ100%分離可能。

• 低BG技術: 低放射能PMTの開発(暗黒物質探索など)

◆ あとは、結晶内部のU/Th系列の放射性不純物を落とす必要がある。



	ウクライナ	PIKACHU
検出器	GSOシンチレータ	GAGGシンチレータ
¹⁶⁰ Gdの量	100 g	700 g(2結晶)
発光量	10,000 ph./MeV	60,000 ph./MeV
データ取得	約2年	2-3年
BGレベル	[3]参照	PSDで一桁改善
半減期リミット	$T^{0v} > 2.3 \times 10^{21}$ y $T^{2v} > 2.1 \times 10^{19}$ y	目標: 一桁以上 改善、2νββ発見

神岡での測定2021

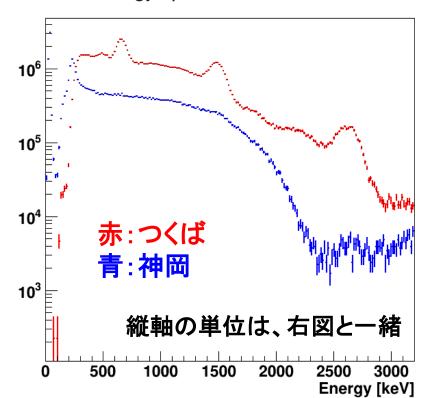
・ 検出器を神岡地下1000mの東北大茂 住実験室内にあるPICOLON実験用シー ルドに設置してBG調査を行った。

日程:2021年7月4~6日

作業者:飯田、伏見、細川、吉野、水越

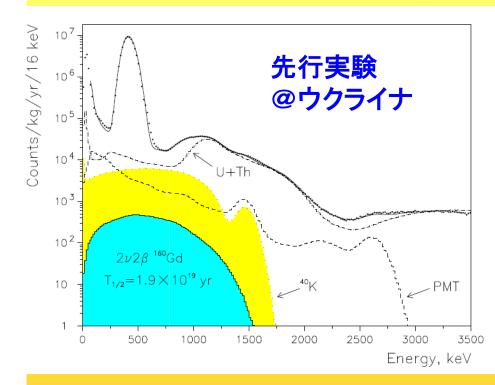
データ取得時間:12時間

- ✓ 鉛15cm & 銅5cm厚
- ✓ GFAG結晶(6.5 cmφ×14.5 cmL) × 1
- ✓ PM amp(10倍)
- ✓ 波形デジタイザ(1.25ns/bin)
- ✓ 閾値:200 keVくらい

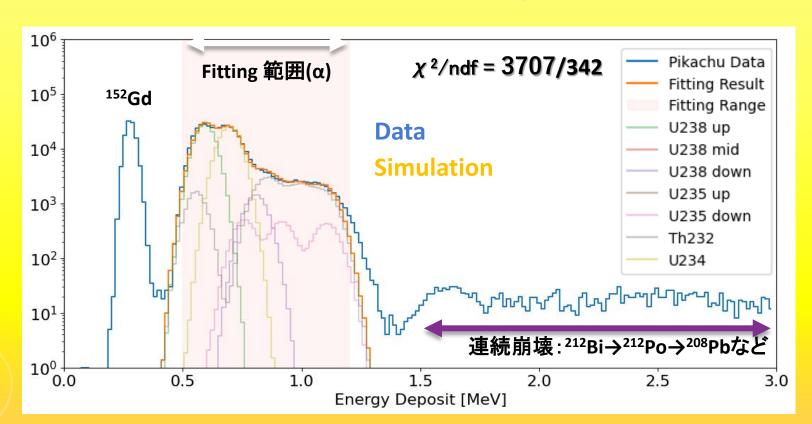

β-Spectrum comparison with GSO

PSDでベータ線を選んだ。

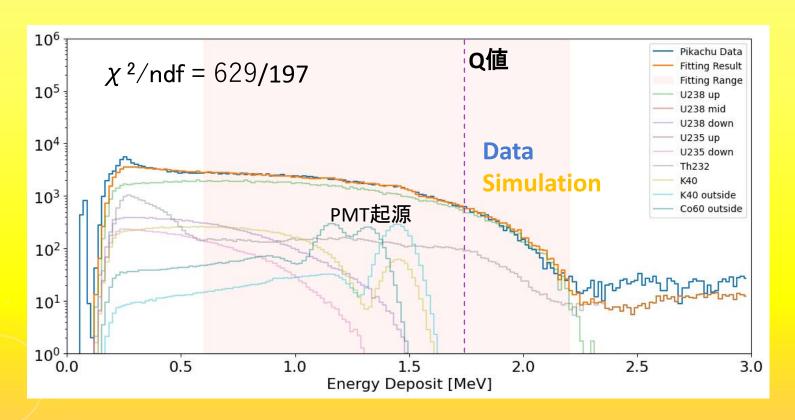
Events/16keV


- 地上に比べシールドも厚いため、BG は減った。
- 先行実験にはまだ一桁負けている。

Energy spectrum for BG run


BGレベルのまとめ

	vs つくば	vs ウクライナ
1000 keV	1/3	10倍
1730 keV	1/2	20倍
2615 keV	1/30	10倍


GEANT4によるBGの内訳推定

- GEANT4を用いてデータに含まれるBGの理解を試みた。
- データの α 線はすべて内部不純物(U/Th)由来のスペクトルである。
- U/Th由来のBGモデルを作成
 - $\Rightarrow \alpha$ データにFitして結晶内部のU/Th不純物量を求めた

β線バックグラウンドの理解

- 内部不純物(U/Th系統, ⁴⁰K)とPMTからの γ 線BG(⁴⁰K, ⁶⁰Co)
 - U/Th系統の内部不純物比は、先のα線Fittingで決定
- Q値においては、ほとんど²³⁴Pa(²³⁸Uの下流)のベータ崩壊が 主要なBGであることを明らかにした。 → 結晶の純化!!

高純度GAGG結晶作製の方針

同じサイズのGAGG結晶の育成には以下の材料が必要。

1. 酸化ガドリニウム(Gd₂O₃) 3.8 kg

2. 酸化ガリウム(Ga₂O₃) 2.0 kg

3. 酸化アルミニウム(Al₂O₃) 750 g

4. 酸化セリウム(CeO₂) 15 g

- Gd_2O_3 は、SK-Gdの硫酸Gdを作っている日本イットリウム(NYC)社に協力を依頼。樹脂による純化を行った。5万円/kg
- Ga₂O₃に関してもGd₂O₃同様の手法で純化を試した。
- Al_2O_3 は酸に難溶のため純化が難しい。 $3種類の高純度Al_2O_3$ を購入。Ge検出器で測定し、最も不純物濃度の少ないものを選別して結晶に用いる。
- CeO2は少量しか用いないので、今回は無視。

Gd₂O₃原料の純化

- 複数の原料をGe検出器で測定して不純物量を調査。
- 左から、元の原料、同じ会社の高純度品、NYCで純化したもの。

単位は [mBq/kg]

	Gd ₂ O ₃ (4N)	Gd ₂ O ₃ (6N)	Gd ₂ O ₃ (純化)
²³⁸ U-chain (upepr)	1750 ± 221	-	< 81.9
²³⁸ U-chain (midd.)	< 4.55	< 5.28	< 1.56
²³⁵ U-chain (late)	130 ± 40	< 11.4	< 5.36
²³² Th-chain (upper)	270 ± 12	10.3 ± 7.4	4.31 ± 2.04
²³² Th-chain (late)	293 ± 10	< 8.96	< 2.66
⁴⁰ K	84.8 ± 28.7	90.0 ± 43.8	20.9 ± 11.2
サンプル重量	419 g	120 g	1005 g
測定期間	6.0 days	20.5 days	12.5 days

- 純化によって一桁以上の不純物低減を確認。
- ✓ 当面の目標をほぼ達成!!

Al₂O₃原料の調査

単位は [mBq/kg]

	C&A	希硝酸洗浄	A社-1	A社−2	B社
²³⁸ U-chain (upper)	476 ± 43.5	94.1 ± 22.1	52.5 ± 24.2	72.15 ± 23.28	< 28.26
²³⁸ U-chain (mid.)	< 4.92	< 2.45	3.09 ± 1.67	< 1.86	< 5.49
²³⁵ U-chain (late)	< 13.04	< 4.39	< 4.63	< 3.89	< 3.54
²³² Th-chain (upper)	15.95 ± 24.37	< 9.54	16.4 ± 3.22	19.43 ± 3.23	5.85 ± 2.80
²³² Th-chain (late)	54.64 ± 5.95	47.2 ± 3.3	135.3 ± 4.8	18.95 ± 2.46	< 2.39
⁴⁰ K	< 96.5	< 40.7	123.6 ± 18.5	< 20.64	< 36.58
サンプル重量	480 g	749 g	1 kg	1 kg	1 kg
測定期間	6.4 days	10.7 days	7.5 days	3.4 days	6.7 days

- もともとの原料はU-238系列が多い。
- 希硝酸洗浄を試した結果、U-238の不純物量は低減した。
- 3社のAl₂O₃原料を比較したところ、B社のものが最も不純物 含有量が少ないことが分かった。
- ✓ 今後、Al₂0₃原料はB社のものを用いていくことに決定。

Ga₂O₃とCeO₂原料の調査

単位は [mBq/kg]

Ga ₂ O ₃	C&A	NYC (純化)
²³⁸ U-chain (upper)	< 69.17	< 38.75
²³⁸ U-chain (mid.)	< 9.86	< 2.49
²³⁵ U-chain (late)	< 8.54	< 9.57
²³² Th-chain (upper)	< 10.76	< 7.56
²³² Th-chain (late)	< 8	< 2.75
¹³⁷ Cs	24.62 ± 3.08	< 1.44

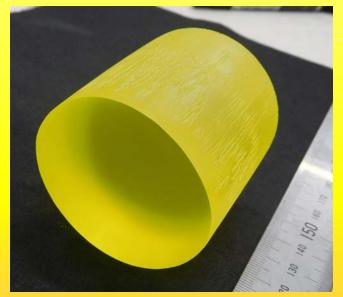
CeO ₂	C&A
²³⁸ U-chain (upper)	< 59.01
²³⁸ U-chain (mid.)	< 3.63
²³⁵ U-chain (late)	< 4.62
²³² Th-chain (upper)	< 4.35 ± 1.87
²³² Th-chain (late)	2.61 ± 1.33
¹³⁷ Cs	< 1.54

✓ Ga₂O₃、CeO₂ともに、もともと不純物濃度は低いことが判明。

まとめ(材料純化)

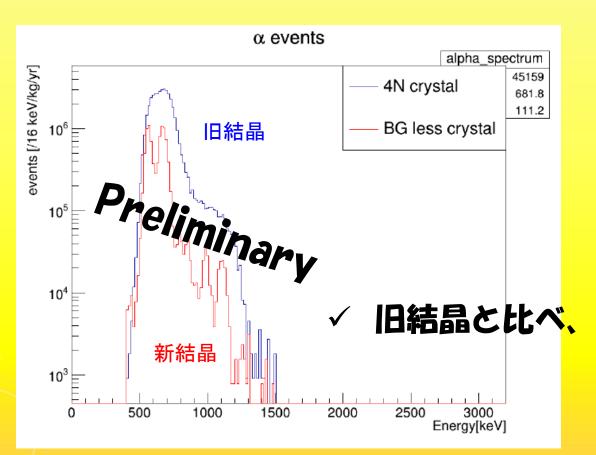
単位は [mBq/kg]

旧結晶	Gd2O3	Ga2O3	Al2O3
²³⁸ U-chain (upper)	1750 ± 221	< 69.17	476 ± 43.5
²³⁸ U-chain (mid.)	< 4.55	< 9.86	< 4.92
²³⁵ U-chain (late)	130 ± 40	< 8.54	< 13.04
²³² Th-chain (upper)	270 ± 12	< 10.76	15.95 ± 24.37
²³² Th-chain (late)	293 ± 10	< 8	54.64 ± 5.95
⁴⁰ K	84.8 ± 28.7	< 76.7	< 96.5


新結晶	Gd2O3	Ga2O3	Al2O3
²³⁸ U-chain (upper)	< 81.9	< 38.75	< 28.26
²³⁸ U-chain (mid.)	< 1.56	< 2.49	< 5.49
²³⁵ U-chain (late)	< 5.36	< 9.57	< 3.54
²³² Th-chain (upper)	4.31 ± 2.04	< 7.56	5.85 ± 2.80
²³² Th-chain (late)	< 2.66	< 2.75	< 2.39
⁴⁰ K	20.9 ± 11.2	< 27.6	< 36.58

高純度結晶育成!

- 純化や選別によって得られた高純度な原料を用いて、東北 大で2インチサイズのGAGG結晶を作製した。
- 切断、研磨したものが手元にある。
- 反射材を巻き、PMT、ライトガイドと組み合わせて検出器を 作製。つくばで性能評価、神岡でBG評価を実施。



BGレベルの評価

• つくばで、アルファ線のレートから結晶内部の放射性 BGレベルを推定。

組成を変えたことで、 エネルギー分解能も 向上している。

旧結晶と比べ、約一桁のBG低減!!

神岡での測定2023

- 神岡地下1000mの低BG環境下で、高純度GAGG結晶のBG 調査を行った。
- XMASS実験(暗黒物質探索)から低放射能PMT(R8778)を借りて、高純度結晶と組み合わせて測定。
- 先行研究とのBG比較。感度更新の可能性調査。
- ✓ 2023年6月12-14日
- ✓ 神岡鉱山内東北大茂住実験室
- ✓ 鉛15cm+銅5cmのシールド
- ✓ 測定時間
 - → 通常PMT 18時間
 - → 低放射能PMT 17時間

今後の予定

2023年夏 高純度結晶2号機が完成予定(純化スタディ)

2023年度内 東北大で高純度大型結晶(現状純度)を作製

2024年前半 大型結晶の性能・BG評価@つくば、神岡

2024年夏 神岡で大型結晶を用いて長期測定開始

2025年夏 1年のデータを使って、感度更新!!

さらに先 超超高純度結晶を使って、2νββ発見!!

異分野融合研究: PIKACHU実験

〇科学的観点

原子核分野の方もぜひご参加ください!

宇宙の物質起源 解明!!

素粒子物理

- ✓ 0νββ発見
- ✓ レプトン数の破れ
- ✓ 標準理論を超えた物理へ

<u>〇技術的観点</u>

地下実験

伏見(徳島)、細川(東大)、飯田他

- 微弱放射能測定
- 環境放射線シールド
- 低放射能光センサー
- DAQ構築
- GEANT4シミュレーション

原子核物理

- ✓ 2νββ発見
- ✓ 核子間相互作用の理解
- ✓ 核行列要素計算の高精度化

材料工学

鎌田、庄子、吉野(東北大金研)

- 超高純度結晶育成
- GAGG結晶の高性能化・大型化

計算科学

水越(JAXA)、日野原(筑波大·計算乜)

- 機械学習を用いたデータ解析
- 核行列要素理論計算への反映

<u>Summary</u>

- Gd-160の二重ベータ崩壊探索(PIKACHU)実験
- 0νββの感度更新、2νββ発見を目指す。
- 結晶原料の高純度化に取り組み、特に Gd_2O_3 で1/20以下までウラン系列不純物を落とせた。
- ・ 高純度結晶を用いた性能・BG評価を実施中。

- PIKACHU実験は協力者を大募集中です。
- 二重ベータに興味がある人、小規模実験が好きな人、 お酒が好きな人、ピカチューが好きな人 etc.
- ご連絡お待ちしています!!

→ tiida@hep.px.tsukuba.ac.jp