

LHC22s period 18th November 2022 16:52:47.893

ALICEUPSades for LHC Run & Devond

TCHOU Meeting, June 27th 2023, Tsukuba University Rachid GUERNANE LPSC Grenoble CNRS-IN2P3/University Grenoble Alpes

> Lol CERN-LHCC-2020-009 CERN-LHCC-2019-018 CERN-LHCC-2022-009 TDR published in 2023 for Run 4 upgrades

The LHC (heavy-ion) programme

intermediate upgrade (major upgrade

Forward Calorimeter

Explore the gluon structure of hadrons and nuclei

- At small x, dominant degrees of freedom of the hadrons are not valence guarks, but gluons!
 - (Exponential) growth of gluon density with increasing energy
- Larges uncertainties on gluon distributions in nuclei at small x
 - Scarce experimental data (DIS) available to constrain the gluon nPDF
 - Fit the nPDF in a global QCD analysis 0
 - QCD evolution equations (DGLAP & BFKL) 0

Reveal gluon saturation effects at small x which is an unavoidable consequence of QCD!

- Direct photon production provides sensitivity to gluon densities in protons and nuclei
 - FoCal measurement at high rapidity (3.4 < η < 5.8) and thereby low x (down to ~10⁻⁶) in nuclei

"Phase diagram" of a

proton/nucleus

saturation

Performance of the FoCal detector

• Kinematic coverage of electromagnetic probes of current and future experiments at the LHC and other facilities

- Impact of FoCal on the gluon nPDF
 - Strong constraints over a large x
 region: ~10⁻⁵-10⁻²
 - Substantially outperform the expected performance of EIC for $x < 10^{-3}$

The FoCal-E detector

1 HG cel

22x

FoCal-H

- The main challenge of direct photon production measurement at high rapidity lies in disentangling direct photons from π^0 decays at high energy
 - ~5 mm separation of photon pairs from π^0 decays (p_{τ} = 10 GeV, η = 4.5)
 - Require a low Molière radius and high granularity → Si-W calorimeter with effective granularity ≈ 1 mm²
- 20 layers : W(3.5 mm \approx 1 X_0) + silicon sensors
 - 18 pad layers → shower profile and total energy
 - 2 pixels (ALPIDE) → spatial resolution essential for shower separation

The FoCal-E PAD prototype

- Gluing and wire bonding of the silicon sensors onto the PCB
 - Provide clean biasing (to ground) on the back side of the sensor

Excellent planarity! (≲10 µm)

Bleeding glue (not bonded)

[2]1854,12µm

X3000,00µ

Blocked hole by the potting material (use translucent potting later on)

Readout electronics of the FoCal-E Si-PAD layers

 Design, production, tests & DAQ of the whole electronic chain

FEE board (HGCROC V2 Omega LLR)

High voltage is fed to the aggregator and distributed to single pads

T.	
Inst	PUBLISHED BY IOP PUBLISHING FOR SISSA MEDIALAB
	Accepted: April 8, 2023
	PUBLISHED: April 24, 202:

Prototype electronics for the silicon pad layers of the future Forward Calorimeter (FoCal) of the ALICE experiment at the LHC

O. Bourrion,* D. Tourres, R. Guernane, C. Arata, JL. Bouly and N. Ponch	ant
Univ. Grenoble Alpes, CNRS, Grenoble INP, ¹ LPSC-IN2P3, 38000 Grenoble, France	

Performance of the FoCal-E PAD prototype

- Lab tests
 - Pedestal adjustement, calibration with internal charge injection
 - LED pulses, cosmics
 - Timing (ToA/T)
- Beam tests at CERN
 - PS T9 (June 2022)
 - Optimization of the shaper parameters with MIP (15 GeV/c hadrons)
 - \circ Position & HV scans
 - SPS H6 (September 2022)
 - DAQ CRU-02
 - \circ Energy scan with electron beams

ITS3

Heavy flavor physics at LHC Run 4

• Enhance the capabilities of the ALICE experiment for heavy quarks studies

6 8 10 12 14 16 18 20

 $p_{_{\rm T}}$ (GeV/c)

10 12 14 16 18

p_ (GeV/c)

2

10

12

14

p_GeV/c

14

p_ GeV/c

10

12

 Π^{\dagger}

The ITS3 detector

beamline

Wafer-scale chips $(\sim 27 \text{ cm long})$

Sensors thinned down to $20-40\mu m (0.02-0.04 \% X_0)$

uter har beam pipe

Inner Barrel 432 chips of 180 nm technology. node (transistor etching size) ALPIDE chip size limited by the dimensions of the reticule itself (\sim 3 cm \times 2 cm)

Middle-end electronics for ITS3

- System functionalities
 - Transmit data upstream at 10 Gbps
 - Supply clock and trigger signals to the detector
 - Provide power and bias to the detector
 - Slow control and monitoring
- System requirements
 - Sustain high radiation dose rates and magnetic field
 - Radiation qualified COTS or CERN-developed components
 - Fit within the limited service volume (see next slide)

ITS2 RUs and PUs

ITS3 mechanics

- Integration & dedicated cooling system for DSB
 - Very limited available service volume!
 - ~45 W dissipated per half-barrel (for 3 layers)
- Design & production mechanical parts for the detector air cooling system
 - First prototypes of the air cooling manifold produced by UV LCD and high-temperature FDM 3D printing with resins
 - Explore other materials for the final solution
 - Flexible bi-material monolithic components (need specific printer head)

ALICE3

ALICE3: a next generation HI experiment for LHC Run 5 & 6

"Ambition to design a new experiment to continue with a rich heavy-ion programme at the HL-LHC" mentioned in the <u>Update of the European strategy for particle physics</u>

- Goal: studies of pp, pA, and AA collisions at luminosities ×20-50 higher than in ALICE in Run 3-4
- Fast and ultra-thin detector with precise tracking and timing
 - "Nearly massless" tracker based on silicon CMOS pixels (MAPS) covering ~70 m^2
 - PID via Si-based time-of-flight with ~20 ps time resolution
 - Large acceptance barrel + end caps $\Delta \eta = 8$
- Ultimate performance for HF, thermal radiation, and soft hadrons ($p_T < 50 \text{ MeV}/c$)
 - Doubly and triply heavy flavour, hadron production, multi-quark states
 - Chiral symmetry restoration (e.m. probes)
 - **Beyond HI** (phase space complementary to other experiments)
 - Violation of fundamental properties of quantum field theories (emission of soft photons)
 - New physics in soft sector, e.g. dark photons

Summary

- LS2 Upgrades (2019-2021)
- LS3 (2026–2029): new upgrades for LHC Run 4
 - FoCal: γ , π⁰, jets in the forward region to constrain the gluon nPDF at low *x*
 - ITS3: truly cylindrical silicon layers made of ultra-thin wafer-size MAPS
 - \circ Low-mass dielectrons (\rightarrow QGP temperature)
 - Improve HF-particle performance + search for exotic charm nuclei

• Beyond 2030: continue the heavy-ion programme during the HL-LHC era

- Possibility of a "nearly-massless" silicon detector
 - Multi-HF particles
 - Low-mass dielectrons and soft photons

Unprecedented insight into QGP world expected ahead of us!

END