

Hf-STJ development for COBAND — I-V characteristics studies —

2023年度

第2回TCHoU構成員会議•成果報告&交流 2023/12/18

Y. Takeuchi (TCHoU, Univ. of Tsukuba) for the COBAND collaboration

COBAND(Cosmic Background Neutrino Decay)

Search for Neutrino decay in Cosmic background neutrino

→ To be observed as FIR photons around λ ~50µm

Neutrino Decay

Neutrino Decay signal and backgrounds

We can identify ν decay signal by highly precise measurement of photon energy spectrum around $\lambda \text{~50}\mu\text{m}$

→ Require for the detector to detect and measure single photon energy at λ ~50µm

超伝導状態では、フェルミ準位 ε_Fの付近の準位の電子二個が2Δの束縛エネル ギーにより、Cooper 対を形成 → エネルギー準位にギャップが生じる

	Si	Nb	Та	AI	Hf	
Tc[K]		9.23	4.48	1.20	0.165	
Δ[meV]	1100	1.550	0.7	0.172	0.020	$\Delta \sim 1.8 k_B T_C$ (BCS theo

Superconducting Tunnel Junction (STJ)

Superconductor / Insulator /Superconductor (SIS) Josephson junction device

A constant bias voltage ($|V| < 2\Delta/e$) is applied across the junction.

A photon absorbed in the superconductor breaks Cooper pairs and creates tunneling current of quasi-particles proportional to the deposited photon energy.

• Much lower gap energy (Δ) than FIR photon \rightarrow Can detect FIR photon and measure its energy.

STJ candidates

Nb/AI-STJ

- Well-established and commonly used.
- Δ ~0.6meV by the proximity effect from AI
- Operation temp. <400mK
- Back-tunnelling gain G ~10
- $N_{q.p.}$ =25meV/1.7 Δ ×10~ 250 σ_{E} /E~10% for E=25meV (λ ~50 μ m)
- → 25meV single-photon detection is feasible ideally.
 - → Candidate for the rocket experiments with diffraction grating.

Hf-STJ

- Not established as a practical photo-detector yet by any group
- N_{q.p.}=25meV/1.7Δ~735
- 2% energy resolution for a 25meV single-photon is achievable
- Spectrum measurement without a diffraction grating.
 - → Developing for a future satellite experiment

	Si	Nb	AI	Hf
Tc[K]		9.23	1.20	0.165
Δ[meV]	1100	1.550	0.172	0.020

Superconducting device process equipment at KEK clean room

Hf-STJ samples are fabricated at KEK clean room by our group.

- Successful in etching Hf layer in 2008.
- Confirm SIS junction by Hf-HfOx-Hf in 2010.
- Confirm Hf-STJ response to visible light pulse in 2013.

Aligner in yellow hat

Slide from DPPD session, TCHoU workshop on 2021/3/29

X-ray illumination test at IBS CUP in Jun. 2019

- Adiabatic Demagnetization Refrigeration (ADR) at temperature down to 30mK
 Hf-STJ I-V
- Hf-STJ response to X-ray photon (⁵⁵Fe)

Slide from DPPD session, TCHoU workshop on 2021/3/29 X-ray illumination test at IBS CUP in Jun. 2019

On ADR cold stage

- STJ samples
- Cu collimator
- X-ray source (⁵⁵Fe) sealed in polyester tape
- Solenoid coil with persistent current switch

cold stage

25mm

chip carrier ¹⁰

Slide from DPPD session, TCHoU workshop on 2021/3/29 200 μm sq. Hf-STJ sample under test

Slide from DPPD session, TCHoU workshop on 2021/3/29

Setup for I-V curve and X-ray response measurements at the IBS CUP

- Sinusoidal current on STJ for I-V measurement
- Constant current on STJ for X-ray response measurement
- Voltage of STJ is read with differential amp. placed at room temp.
- X-ray signal is shown up as a negative pulse in STJ voltage.

Slide from DPPD session, TCHoU workshop on 2021/3/29

Signal fit to the template

Use the region from -50 μ s to 200 μ s in the template

- Amplitude and baseline are fitting parameters.
- Also scan Δt from -50µs to +50 µs, and choose the Δt which gives the best χ^2

Slide from DPPD session, TCHoU workshop on 2021/3/29 Energy distribution

After selection on fit parameters for candidates, 1138 events left.

- K α 1+K α 2 X-rays with energy of 5.9 keV and a probability about 24.4%,
- K β X-rays with nominal energy of 6.5 keV and a probability about 2.85%

Assuming $K\alpha$: $K\beta$ ratio and peak energies and same σ for $K\alpha$ and $K\beta$, We fit the distribution and scaled.

We found the energy resolution is $6.7\% (396\pm22eV)$

I-V curve about 34mK w/ B field

 $200\mu m$ square Hf-STJ @ T \sim 34mK

- Applied magnetic field ~ 10 G on STJ

This leakage is much larger than our expectation. (Our goal is \sim pA)

I-V curve about 30mK w/o and w/ B field

200µm square Hf-STJ @ T~30mK

• DC Josephson current is shown up without magnetic field, and it is suppressed with magnetic field (\sim 10G).

This confirms the SIS junction on the STJ.

Examples of Hf-STJ smpl.D I-V for temp. dep. after ACC, offset correction

Temperature dependence of Gap energy

Temperature dependence of Gap energy

- Temperature dependence of ΔV matched the BCS theory very well.
- Found to be $T_c = 247.742 \pm 0.004 \pm 4.6 mK$

 $\Rightarrow \Delta_{\text{BCS.0}} \sim 37.7 \mu eV, \kappa \sim 0.69$

Temperature dependence of STJ Leakage

BCS 理論
$$I_{th} \propto 2N_0 \sqrt{2\pi\Delta kT} \exp\left(-\frac{\Delta}{kT}\right)$$

BCS theory (P.W.Epperlein 1978)

$$=2N_0kT_c\sqrt{2\pi}\sqrt{\frac{\Delta}{kT_c}}\frac{T}{T_c}\exp\left(-\frac{\Delta}{kT_c}\frac{T_c}{T_c}\right)$$

BCS 理論で T_c に対応する Δ より小さくなっていると仮定

$$\frac{\Delta_{\rm BCS}}{kT_c} \rightarrow \frac{\Delta'}{kT_c} = \frac{\nu \Delta_{\rm BCS}}{kT_c} \qquad \qquad \frac{\Delta_{\rm BCS,0}}{kT_c} \sim 1.7639 \ ({\rm BCS})$$

Temperature dependence of Leakage

- Temperature dependence of leakage matched the BCS theory.
- Found to be $\nu \Delta_{BCS,0} \sim 29 \mu V$

Constant terms in Leakage

$$I_{th} = P_0 \sqrt{\frac{\Delta_{\text{BCS}}}{kT_c}} \frac{T}{T_c} \exp\left(-\frac{\nu \Delta_{\text{BCS}}}{kT_c} \frac{T_c}{T}\right) + P_2$$

- V dependence of constant term
- V=10, 15, 20, 25 µ ∨の4点
 を使い直線fit

• Constant term は、STJ に並列に存在する抵抗(4.8Ω)成分?

Constant terms in Leakage

パラレル抵抗成分の大きさは、冷凍機のサーマルサイクルごとに異なることが 確認されている。

→絶縁膜層の欠陥ではない?

- 地磁気, ADR漏れ磁場などのSTJに対して垂直成分の磁束トラップによる normal current path の形成?
- 磁気シールドによる改善の可能性。

Constant terms in Leakage

I-Vカーブからパラレル抵抗成分の除去

24

- Imaginary component in gap energy f_{t} quasi-particle lifetime, gap energy Δ has f_{t} rt (Dynes 1978) Because of quasi-particle lifetime, gap energy Δ has • imaginary part. (Dynes 1978).
- In this case, density of state distribution changes

25

測定されたI-V から gap energy Δの複素成分(準粒子寿命の情報)が 引き出せる可能性

Summary

- Hf-STJ is under development for application to COBAND project, aiming at farinfrared single photon detector and spectrometer.
- We successfully fabricated Hf-STJs with confirmed SIS junction and tested them with X-ray source.
- We confirmed the clear signals for X-ray single photon from ⁵⁵Fe with a Hf-STJ sample and found that energy resolution is about 6.7% for 5.9keV.

These are the world first results for Hf-STJ.

- We measured and compare temperature dependence of gap energy ∆ and I-V curve of Hf-STJ with BCS theory. These strongly support that our Hf-STJ sample is fabricated as the SIS junction successfully.
- Unexpectedly large leakage is likely due to normal current path other than SIS junction. This indicates the possibility of reducing the leakage.