Experimental study of asymmetric nuclear matter EOS from heavy-ion reactions with RIBF-SPiRIT

Tadaaki Isobe RIKEN, Nishina Center

Workshop at the Tomonaga Center for the History of the Universe (TCHoU) March 29, 2024

Nuclear matter : many body system of nucleon Bohr & Mottelson

Nuclear Structure Vol.1

82

50 111

50

100

150

А

200

250

126

 $B(N,Z) = a_V A - a_S A^{2/3}$

 Equation of State describes the relationship of thermodynamical quantity ←→ EoS of ideal gas:PV=nRT

Phase of diagram because of interaction between the

• Nuclear liquid drop model

ullet

• 1st order description of nuclear mass is succeeded. (Bethe-Weizsäcker Mass formula) Asymmetric nuclear matter EOS: Symmetry Energy term of nuclear EOS

• Equation of state of nuclear matter can be reconstructed by using the differential thermodynamic identity:

$$E(T,\rho,\delta) = E(T,\rho,\delta=0) + \frac{E_{sym}(T,\rho)}{\delta} \frac{\delta^2 + O(\delta^4)}{\delta}$$
$$\delta = (\rho_n - \rho_p)/\rho$$

- The <u>asymmetric term of nuclear EOS</u> depends on δ
- Important term especially for astrophysics
 - Neutron star structure (T~0)
 - Solar mass star with the radius of ~10km.
 - Supernovae process (T~ O(10) MeV)
 - Neutron star merger/Gravitational wave

Visualization of a NS merger and the gravitational waves

Gravitational wave from neutron star merger Tidal deformation depends on nuclear EoS

Nuclear EoS is important also for the r-process nuclear synthesis in neutron star merger

Nuclear EoS is important also for the r-process nuclear synthesis in neutron star merger

https://en.wikipedia.org/wiki/Nucleosynthesis

Asymmetric nuclear matter EOS: Symmetry Energy term of nuclear EOS

Dohi et al., Astro. Jour., 923:64, 2021

be obtained both from Astrophysics and nuclear physics.

Terrestrial experimental study of high dense matter nuclear symmetry energy \rightarrow Heavy Ion Collision (HIC)

- Unique way to realize high dense matter in laboratory.
- Quite challenging to extract the information of high dense matter symmetry energy since we need the help of <u>transport model</u>.
 - Mixture of equilibrium and non-equilibrium state.

Experimental observables from heavy ion collision to constrain the symmetry energy

- No direct observables, but contains the information of symmetry energy
- Symmetry energy → appeared as pressure difference between neutron and proton

Stiff symmetry energy (large L)

→ lower ρ_n/ρ_p in higher dense region → lower n/p in high ρ

Soft symmetry energy (small L)

→ larger ρ_n/ρ_p in higher dense region → larger n/p in high ρ

9

Experimental observables from heavy ion collision to constrain the symmetry energy

- No direct observables, but contains the information of symmetry energy
- Symmetry energy → appeared as pressure difference between neutron and proton

Stiff symmetry energy (large L)

→ lower ρ_n/ρ_p in higher dense region → lower n/p, lower π -/ π +

Soft symmetry energy (small L)

→ larger ρ_n/ρ_p in higher dense region → larger n/p, <u>higher π -/ π +</u>

10

SPiRIT experiment: neutron rich Sn+Sn collision beam line+TPC+trigger+neutron detector

SPiRIT experiment: neutron rich Sn+Sn collision beam line+TPC+trigger+neutron detector

Sn+Sn Collision event display with TPC

Charged particle measurement with Time Projection Chamber

Estee et al., PRL 126 (2021) 162701

Result on pion multiplicity: pion ratio →Large discrepancy among theoretical models

- Numerical calculation of HIC dynamics by using transport theory.
- Predictions with same EoS are supposed to be same \rightarrow Larger discrepancy than experimental result.
- Different assumptions regarding the mean field potentials for ∆ baryons and pions can influence the pion multiplicities.

High-momentum pion data: reduce the influence from the assumption for Δ /pion mean field potential

• Sensitivity to the isospin dependence of mean field dominates at high-pT.

Compilation of experimentally determined symmetry energy

- Fitting with phenomenological formula: S_0 =(33.3 ± 1.3) MeV, L= (59.6 ± 22.1) MeV
 - suggests a radius for a 1.4 solar mass neutron star of 13.1 ± 0.6 km

Extra observable: p/d/t dN/dy

Difference from Relativistic HIC

- Many body system composed of nucleons.
- Cluster state such as deuterium and alpha exists.
- x100 Longer collision time of ~O(10fm).
- Less charged particles.
 - Track finding is simpler.
 - Worse reaction plane resolution.
- Possible to measure neutron production and its flow.
- Possible to identify spectator and to measure its kinematics.

Measurement of spectator for event characterization

- Spectator would be useful for event characterization.
- According to AMD calculation:
 - It looks difficult to measure impact parameter through the measurement of spectator fragment.
 - Spectator information may deduce the reaction plane angle more preciously.
 - $\sigma(\Delta \phi)$ w/ participants: 1rad
 - σ(Δφ) w/ **spectator: 0.7 rad**

Summary

- Symmetry energy term of nuclear EoS is essential to understand the property of neutron star.
- Heavy RI collision experiment was conducted at RIKEN-RIBF to give constraint on EoS for high dense regime.
 - Spirit experiment
 - Charged pion and hydrogen production was measured.
- Delta baryon potential in dense matter is necessary to study pion production in HIC. \rightarrow next step
- Proton/neutron measurement \rightarrow next step for momentum dependence of U in matter.
- I am curious the universality of physics among the different hierarchy: nuclear matter and quark matter.
- Exiotic hadron $\leftarrow \rightarrow$ Exiotic nuclei
- Halo state, Borromean, Strong E/B field ...