TCHoU Workshop

March 29, 2024 University of Tsukuba

Reaction cross sections for proton-drip line nuclei

Tetsuaki Moriguchi University of Tsukuba

Collaborators

Univ. of Tsukuba

T. Moriguchi, R. Kagesawa, A. Ozawa, M. Amano, D. Kamioka, A. Yano Osaka Metropolitan University W. Horiuchi

RIKEN Nishina Center

Y. Abe, M. Mukai,

National Institutes for Quantum Science and Technology

A. Kitagawa, S. Sato

Tokyo Institute of Technology

D. Nagae

Saitama Universtity

M. Sakaue, T. Suzuki, T. Yamaguchi, K. Yokota

Beihang Universtity

B. H. Sun

Japan Synchrotron Radiation Research Institute

S. Suzuki

Stable/ Unstable nuclei

 Theoretical prediction : ~10000 nuclei Stable nuclei : Exist in nature (\sim 300) Unstable nuclei : Decay within their lifetime (all except for stable nuclei) Even existences of many unstable nuclei are not observed yet. Pb 82 Proton-drip line **Nuclear chart Sn** 50 126 Proton Neutron-drip line Ni 28 Number Ca 20 Stable nuclei Unstable nuclei He² Magic number Neutron number (2,8,20,28,50,82,126)

Nuclear density distribution

Neutron

Proton

surface

Stable nuclei

Proton and neutron are mixing uniformly. Untable nuclei

Halo: Expansion of weakly bound of valence nucleon(s)

Skin: Layer of proton or neutron around nuclear surface

core

r ~ 10⁻¹⁵ m (∝ A^{1/3})

Distance from core center

I. Tanihata et al., PRL55, 2676 (1985). I. Tanihata et al., PLB 88, 592 (1988)

- $-\sigma_R$ measurements are effective methods to extract the nuclear size properties.
- So far, Be, C and Al were mainly used as reaction targets for σ_{R} measurements.

⇒ How about "<u>Nucleon</u> - nucleus" collision?

- Only a few experimental σ_R for proton-unstable nucleus collisions.

Proton target for σ_R measurement

- Measurement of total reaction cross section (σ_R) is an effective method to investigate nuclear size properties.
- A proton target has several advantages.

Separation of proton and neutron density distributions (ρ_p and ρ_n)

Isospin asymmetry of \sigma_{NN} Proton target is more sensitive to ρ_n of projectile. Extraction of the nuclear size of medium and heavy nuclei properly

For proton target, the contribution of the Coulomb breakup is very small. (e.g. Carbon ~4% for Z=50) Only a few experimental σ_R for unstable nuclei on a proton target are reported at this time.

- > It is important to understand the collisions between unstable nuclei and a proton.
 - (For proton-rich nuclei, investigations are not performed) well yet in both experimental and theoretical sides.

Only a few experimental σ_R for unstable nuclei on a proton target are reported at this time.

It is important to understand the collisions between unstable nuclei and a proton.

For proton-rich nuclei, investigations are not performed well yet in both experimental and theoretical sides.

Present study

We measured σ_R for ¹⁷F & ¹⁷Ne on a p target. ¹⁶Ne ¹⁷Ne ¹⁸Ne ¹⁹Ne ¹⁹Ne

17**F**

• Candidate of a proton skin for ${}^{17}F$ (g.s., 5/2+)

¹⁷Ne

• Known as the two-proton halo nucleus

 $\Rightarrow \text{Nuclear size}: {}^{17}\text{F} \leq {}^{17}\text{Ne} \\ (r_m = 2.54(8) \text{ fm}) (r_m = 2.68(6) \text{ fm})$ $\Rightarrow \text{Neutron number:} {}^{17}\text{F} > {}^{17}\text{Ne} \\ (N=8) (N=7)$

p-drip

18F

170

¹⁸Na ¹⁹Na ²⁰Na

17F

16**O**

16**F**

15**O**

13**O**

 ^{14}O

Solid hydrogen target (SHT)

We have developed a thick and large solid hydrogen target (SHT) for σ_R measurements with RI beams. [T. Moriguchi et al., NIMA 624(2010)27]

Target cell

Appearance of a typical SHT

A thick and large SHT (Maximum volume : ϕ 50 x 100 mm³) without any void or porous region was developed by optimization of the supply pressure.

Principle of measurement of σ_R

<Transmission method>

$$\sigma_{\rm R} = -\frac{1}{N_{\rm t}} \ln\left(\frac{\Gamma_{\rm in}}{\Gamma_{\rm out}}\right), \quad \Gamma = \frac{N_2}{N_1}$$

N₁: The number of incident nuclei N₂: The number of non-interacting nuclei N_t: The number of target nuclei per unit area Γ_{in}: Γ for a target-in measurement Γ_{out} : Γ for a target-out measurement

For counting N_1 and N_2 , particle identifications both upstream and downstream of the reaction target are needed in the experiment.

σ_R on a carbon target

Exp.

[1] A. Ozawa et al., NPA693(2001)32.

[2] K. Tanaka et al., PRC82(2010)044309.

Calc. (Glauber model)

[3] B. Abu-Ibrahim and Y. Suzuki,

PRC61(2000)051601.

[4] W. Horiuchi et al., PRC75(2007)044607.

σ_R on a carbon target

$\sigma_{R}(^{17}F) < \sigma_{R}(^{17}Ne)$

Glauber model calculation supports the experimental data for ¹⁷F and ¹⁷Ne.

¹⁷Ne is known to be a twoproton-halo nucleus, but ¹⁷F in the ground state is not.

⇒ Nuclear size : ¹⁷F < ¹⁷Ne

 σ_R on a carbon target reflects the spatial spread of a density distribution of nucleus.

Calc. (Glauber model)

[2] K. Tanaka et al., PRC82(2010)044309.

[4] W. Horiuchi et al., PRC75(2007)044607.

[3] B. Abu-Ibrahim and Y. Suzuki,

PRC61(2000)051601.

σ_R on a proton target

[2] T. Moriguchi et al., NPA994(2020)121663.

σ_R on a proton target $\sigma_{R}(^{17}F) \geq \sigma_{R}(^{17}Ne)$ In contrast to a carbon target Carbon target 1600 Calc. Exp. 1500 17F 1400 ¹⁷Ne (qm) 1300 ¹⁷F) $< \sigma_{\rm R}(^{17}{\rm Ne})$ ેંØ_R(1200 ъ 1100 1000 900 100 1000 Energy (A MeV)

- [1] T. Moriguchi et al., submitted to PRC.
- [2] T. Moriguchi et al., NPA994(2020)121663.
- [3] Y. Suzuki et al., Structure and reactions of light exotic nuclei, Taylor&Francis, London, 2003.
- [4] R. J. Glauber, Lectures in Theoretical Physics, Interscience, New York, Vol. 1 (1959).
- [5] B. Abu-Ibrahim et al., PRC77(2008)034607.

Proton target is sensitive to neutrons in a projectile.

	¹⁷ F	¹⁷ Ne
Density spread	Small (w/o halo)	Large (w/ halo)
Contribution of σ_{pn} to σ_{R} on proton target	Large (N=8)	Small (N=7)

- [1] T. Moriguchi et al., submitted to PRC.
- [2] T. Moriguchi et al., NPA994(2020)121663.
- [3] Y. Suzuki et al., Structure and reactions of light exotic nuclei, Taylor&Francis, London, 2003.
- [4] R. J. Glauber, Lectures in Theoretical Physics, Interscience, New York, Vol. 1 (1959).
- [5] B. Abu-Ibrahim et al., PRC77(2008)034607.

Proton target is sensitive to neutrons in a projectile.

	¹⁷ F	¹⁷ Ne
Density spread	Small (w/o halo)	Large (w/ halo)
Contribution of σ_{pn} to σ_{R} on proton target	Large (N=8)	Small (N=7)

- [1] T. Moriguchi et al., submitted to PRC.
- [2] T. Moriguchi et al., NPA994(2020)121663.
- [3] Y. Suzuki et al., Structure and reactions of light exotic nuclei, Taylor&Francis, London, 2003.
- [4] R. J. Glauber, Lectures in Theoretical Physics, Interscience, New York, Vol. 1 (1959).
- [5] B. Abu-Ibrahim et al., PRC77(2008)034607.

For proton-rich nuclei, the isospin asymmetry of σ_{NN} is dominant for σ_R on a proton target, not the density spread.

The decrease of σ_R on a proton target despite the increase of matter radii towards the proton dripline

Glauber model calculation

[K. Makiguchi, W. Horiuchi, PTEP2022, 073D01.]

This theoretical study supports the present σ_R for 17 F and 17 Ne on a proton target.

Energy dependence of σ_R on a proton target

New York, Vol. 1 (1959).

(1996) 93.

Energy dependence of σ_R on a proton target

Low energies : Exp. < Calc. (Glauber model) Intermediate energies: Exp. > Calc. (Glauber model)

Energy dependence of σ_R on a proton target

Low energies : Exp. < Calc. (Glauber model) Intermediate energies: Exp. > Calc. (Glauber model)

Nuclear medium effects (Fermi motion, Pauli blocking)
Low energies : Sensitive
Intermediate energies : Not so sensitive

It seems to be difficult to explain the experimental σ_R at low and intermediate energies simultaneously with nuclear medium effects.

Summary

- We measured σ_R for ^{17}F & ^{17}Ne on a proton target.
- Solid hydrogen target (SHT) was used as a proton target.
- For proton dripline nuclei ¹⁷F and ¹⁷Ne, $\sigma_{\underline{R}}$ on a carbon target
 - ⇒ Contributed by the spread of the density distribution
 - σ_{R} on a proton target
 - $\Rightarrow \text{Contributed by an isospin asymmetry of the} \\ \text{nucleon-nucleon total cross section } (\sigma_{pn} > \sigma_{pp})$
 - Energy dependence of $\sigma_{\underline{R}}$ on a proton target
 - \Rightarrow Discrepancy between exp. and calc.

Future plan

- Measurement of σ_R with the SHT and C for Sn isotopes
- Measurement of σ_R with a solid deuterium target