ALICE FoCal and EIC ~ Complementary and similarity on QCD study ~

TCHoU workshop, March 29, 2024, Tsukuba, Japan

Tatsuya Chujo

University of Tsukuba

Forward LHC (FoCal)

- **- Fo**rward **Cal**orimeter
- LHC ALICE, $\sqrt{s_{NN}} = 8.8$ TeV, pp, pA
- Non-linear QCD evolution, <u>Color</u> glass condensate, initial stages of Quark Gluon Plasma (QGP)
- Physics in LHC Run 4 (2029-2032)
- TDR approved by LHCC on **March 2024**

FoCal (Lol) : <u>CERN-LHCC-2020-009</u>

* T. Chujo (FoCal co-project leader, E-pad rep.)

FoCal-H

Hadronic Calorimeter

z = 7 m

FoCal-E (pad, pixel)

Electromagnetic Calorimeter

Collision Point (IP2)

Main Observables:

- π^{0} (and other neutral mesons)
- Isolated (direct) photons
- Jets (and di-jets)
- Correlations
- J/Ψ , UPC

 $3.4 < \eta < 5.8$ $\eta = -\ln(\tan(\theta/2))$

EIC eA

- Brookhaven National Lab. (BNL, USA)
- Will start operation in 2032
- High luminosity polarized e, p / Ion collider at $\sqrt{s} = 28-140$ GeV
- Luminosity: x100 ~ 1000 higher higher than HERA
- 1st detector: ePIC collaboration

- •Origin of nucleon mass and spin
- •3D structure of the nucleon and nucleus
- Gluon saturation (Color Glass Condensate)
- Hadronization

Physics at Electron-Ion Collider (EIC)

What is the Color Glass Condensate (CGC)?

Internal structure of proton and high energy limit

Mechanism of multipole gluon creations

- Lifetime of parton's fluctuations: $p \rightarrow Larger$, Lifetime $\rightarrow Longer$
- Probability of fluctuation generation: $x \rightarrow$ smaller, Prob. \rightarrow Larger

\rightarrow At high energy, increased small fluctuations exponentially !

Color Glass Condensate (CGC)

proton

nucleus

Large x mid-rapidity Low energy scattering

 $x \approx \frac{2p_T}{\sqrt{s}} \exp^{-\eta}$

gluon splitting

 $\propto N_g$

CGC!

e.g.) Logistic Eq. $\frac{d}{dt}N(t) = \kappa \left((N(t) - N(t)^2) \right)$

 \Rightarrow Balitsky-Kovchegov (BK) e.q.

Small x

forward rapidity High energy scattering

Color Glass Condensate (CGC)

Large x mid-rapidity Low energy scattering

$$x \approx \frac{2p_T}{\sqrt{s}} \exp^{-\eta}$$

CGC!

gluon splitting

 $\propto N_g$

 $\frac{d}{dt}N(t) = \kappa \left((N(t) - N(t)^2) \right)$

Small x forward rapidity High energy scattering

ln x

Where we can see CGC?

- Small x and low Q region (but $Q >> \Lambda_{QCD}$)
- Universal picture of internal structure of high energy hadron (universality)
- Log-Log plot !
 - \rightarrow Essential to explore a wide x-Q² space
- Non-linear QCD evolution
- Find CGC signal \rightarrow Gluon density

How we probe gluon density (dipole formalism)

Dipole (Quadrupole) Formalism"

 \rightarrow NLO cal. is possible

→Comparison e+A DIS with forward p+A : Universality of QCD can be tested

<u>e+A DIS</u>

Observables : int. cross section, Structure func. (F₂, F_L)

$$\sigma_{\gamma^*T} = \int_0^1 \mathrm{d}z \int \mathrm{d}^2 \mathbf{r}_\perp |\psi^{\gamma^* \to q\bar{q}}(z, \mathbf{r}_\perp)|^2 \sigma_{\mathrm{dipole}}(x)$$
$$\sigma_{\mathrm{dipole}}^{\mathrm{LO}}(x, \mathbf{r}_\perp) = 2 \int \mathrm{d}^2 \mathbf{b} \, T_{\mathrm{LO}}(\mathbf{b} + \frac{\mathbf{r}_\perp}{2}, \mathbf{b} - \mathbf{c}_{\mathrm{LO}}(\mathbf{b} + \mathbf{c}_{\mathrm{LO}}(\mathbf{b}$$

Forward p+A

Observables: Inclusive π^0 , jet, direct γ , γ -jet, di-jet

$$|M|_{\mathrm{LO}}^2 \propto \int \mathrm{d}^2 \mathbf{b} \, \mathrm{d}^2 \mathbf{r}_{\perp} e^{i\mathbf{p}_{\perp}\cdot\mathbf{r}_{\perp}} T_{\mathrm{LO}}(\mathbf{b} + \frac{\mathbf{r}_{\perp}}{2}, \mathbf{b})$$

- Study of saturation requires to study evolution of observables over large range in x at low Q^2
- Forward LHC (+RHIC) and EIC are complementary: together they provide a huge lever arm in x
- EIC: Precision control of kinematics + polarization
- Forward LHC: **Significantly lower x**
 - Observables: isolated y, jets, open charm, DY, W/Z, hadrons, UPC
- Observables in DIS and forward LHC are fundamentally connected via same underlying dipole operator
- Multi-messenger program to test QCD universality: does saturation provide a coherent description of all observables, and is therefore a universal description of the high gluon density regime?

Key points to understand CGC and QCD

Need a clear CGC signal

- Hadron measurement \rightarrow Uncertainty by fragmentation
- Need a clean probe (e.g) q + g -> γ + q
- Need to see non-linear evolution of QCD
 - Explore wide rage of x-Q² space
- Theoretically calculable and compare with data (CGC weakly coupled physics) \rightarrow color dipole
- High precision measurements (statistic, systematic)

In x

11

FoCal/EIC and CGC

Saturation signal in FoCal (1)

Mäntysaari, Phys. Rev. D97 (2018) 054023

- Excellent probe: isolated photons from quark-gluon Compton scattering

- Pb–Pb at $\sqrt{s_{NN}}$ =5.02 TeV: 3 months; \mathcal{L} =7 nb⁻¹;
- pp at $\sqrt{s}=14$ TeV: ≈ 18 months, $\mathcal{L}=150$ pb⁻¹;

Saturation signal in FoCal (2)

Stasto, Wei, Xiao, and Yuan, Phys. Lett. B784 (2018) 301

Dilute-dense LO + Sudakov probes quadrupole operator

- Experimental challenge to see an effect of CGC in $\Delta \phi$ width?
- Theory: NLO cal. is needed

Forward γ +jet

Forward di-jet

di-jet: multiple TMD distributions

- γ +jet, balanced di-jet at low-x: $k_T \sim Q_{sat}$ (sensitive to saturation)

- changing $k_{T}(p_{T}) \rightarrow$ exploring non-linear QCD evolution in wide kinematic coverage of *x*-Q² by FoCal

Saturation signal @ EIC eA

shifted t-distribution by CGC

17

FoCal detector (design and current status)

Detector design

E-Pixel

20 layers of W(3.5 mm \approx 1X₀) + silicon sensors:

- Two types: Pad (1x1 cm²) and Pixel (30 x 30 µm²)
- Pad: shower profile and total energy
- Pixel: position resolution to resolve overlapping showers
 - CMOS MAPS technology (ALPIDE)

Conventional metal-scintillator design Cu capillary-tubes enclosing BCF scintillating fibers

~ 1.1 m

FoCal Japan

Responsibilities:

(1) FoCal-E pad, (2) readout and trigger

- Univ. of Tsukuba
- <u>8 institute, 25 members</u> • Tsukuba Univ. of Tech
- Hiroshima Univ.
- Nara Women's Univ.
- Saga Univ.
- Nagasaki Inst. of App. **Sciences**
- Kumamoto Univ.

JSPS KAKENHI Grant Number JP20H05638 基盤 (S) (2020-2024, PI 中條) 「LHC 超前方光子測定によるグルーオン飽和とQGP生成起源」

28

Uniqueness of FoCal detector

- 2)
- 3)

Isolated photon ID

21

FoCal-E pad performance

MIP responce

Longitudinal shower profiles

FoCal-E pad performance

Linearity

Results show expected behavior

Energy resolution

EIC-ZDC design

Table 2: Physics requirement for ZDC

ePIC ZDC prototype test @ ELPH (2024.03)

LYSO crystal with SiPM readout

Hit map of LYSO crystal calorimeter from online monitoring

Summary

- Strong synergies between EIC and LHC forward
- To understand QCD and find a clear signal of CGC, exploring a wide kinematic coverage in x-Q² is crucial
- Universality test of QCD (color dipole formalism) at both EIC and forward LHC
- FoCal: Common detector technologies at forward LHC and EIC (ZDC)
- We will start FoCal production in Japan from 2024, and do physics from 2029-2032 (LHC Run-4) and maybe beyond in ALICE3)

In Q^2

Forward pA at high energies

ln y

DIS (EIC) eA

26

 \sim