ALICE Run 3 and ALICE3

Daiki Sekihata (Center for Nuclear Study, the University of Tokyo) 29.March.2024, TCHoU workshop in QNM, Tsukuba

LHC schedule

Longer term LHC schedule

In January 2022, the schedule was updated with long shutdown 3 (LS3) to start in 2026 and to last for 3 years. HL-LHC operations now foreseen out to end 2041.

Run 6

LS5

Last update: April 2023

Protons physics

Commissioning with beam Hardware commissioning

Ions

ALICE detectors in LHC Run3

ALICE Run3

- Highest collision energy $\sqrt{s_{NN}} = 5.36 \text{ TeV}$
- $dN_{ch}/d\eta \sim 2000$ in central collisions
- Upgrade during LS2
 - GEM TPC (fast readout)
 - ITS2 (vertexing resolution)
 - Online-Offline (O²) reconstruction

Integrated luminosity in ALICE

• 1.54 nb⁻¹ in PbPb at 5.36 TeV ~ 12B collisions

PID performance in Run3

- Clear separation of $e/\pi/K/p/d/t/He$ with TPC dE/dx
- Clear separation of e/ π /K/p with TOF β

Charmed hadrons in Run 3

- Clear peaks of D mesons and $\Lambda_{c}{}^{\scriptscriptstyle +}$
- Results from 290B events recorded in 2022
- Promising

29.March.2024

Charmonia in Run 3

- Clear J/ψ and ψ(2S) peaks in both dielectron and dimuon channels

Bottomonia in Run 3

- First bottomonia peaks with dielectron channel in ALICE
 - 500B events analyzed
- Υ(1S), Υ(2S), Υ(3S) peaks

29.March.2024

Dielectrons in Run3

- Clear π^0 , η , ω/ρ , ϕ , J/ ψ , $\psi(2S)$, and Υ signals and correlated HF \rightarrow ee continuum
- DCA analysis based on different life time of emission sources (Distance of Closest Approach)
 - Prompt (mesons and possible thermal radiation)
 - Non-prompt (correlation HF \rightarrow ee, c τ ~150µm for D mesons, 400µm for B mesons)

Photon conversions

- Critical technique to measure photons at low p_T .
- ITS, TPC, and their support structures are visible.
- Clear reconstruction of $\pi^0 \rightarrow \gamma \gamma$

ALICE3

 $\eta = 4.0$ $\eta = 5.0$

ECal RICH TOF

itof

Ó

z (m)

2

- ALICE3 : Main physics goals 2 pillars –
- Electromagnetic probes
 - Thermal radiation
 - Pre-equilibrium radiation
 - Chiral symmetry restoration
- Heavy flavors
 - Multi-charmed hadrons
 - Beauty baryons beyond $\Lambda_{\!\rm b}{}^0$
 - XXXX

Again, high statistics and precise vertexing are crucial for both topics.

Strangeness tracking

• Retractable tracker allows us to track hyperons, so-called "strangeness tracking".

• Key to reconstruct multi-charmed hadrons

Multi-charmed hadrons

- Precise primary and secondary vertexing
- Necessary for multicharmed hadrons and exotic hadrons.

29.March.2024

Electromagnetic radiation

• Determine early stage of the collision

- e.g. dN/dm_{ee} \propto exp(-m_{ee}/T) in 1.1 < m_{ee} < 2.0 GeV/c².

- Electrons from charmed hadrons are main background.
 - precise vertexing is necessary.

Direct photon HBT

- Size of emission source (size of QGP)
- Disentangle direct photon puzzle
 - large yield (early emission) and large v_2 (late emission) of thermal photons are not understood.
- High- $k_{\rm T}$ diphoton pair provides insight on early stage of space-time evolution

PLB 837 (2023) 137647 arXiv:2308.09747 arXiv:2403.04846 17

29.March.2024

Summary

- ALICE upgrade is successfully done during LS2.
- ALICE recorded high statistics in 2022 and 2023.
 - 28.2 pb⁻¹ in pp at 13.6 TeV
 - 1.54 nb⁻¹ in PbPb at 5.36 TeV
- Nice performance and physics preliminary plots from Run 3
- ALICE3 project with advanced silicon technology
 - retractable tracker in beam pipe
 - PID with TOF, RICH
 - 2 main pillars : EM probes and HF hadrons