

"Tensor renormalization group study of (1+1)-dimensional O(3) nonlinear sigma model"

Center for Computational Sciences(CCS), Univ. of Tsukuba Yoshinobu Kuramashi

The 1st TCHoU member meeting in 2024, July 2, 2024

Plan of talk

- Introduction to Tensor Renormalization Group(TRG)
- Application of TRG to Quantum Field Theories(QFTs)
- Entanglement Entropy(EE) of (1+1)d O(3) NLSM at $\mu = 0$
- Quantum Phase Transition of (1+1)d O(3) NLSM at $\mu \neq 0$
- Summary and Outlook

Tensor Renormalization Group (TRG)

Tensor Network representation

Details of model are specified in initial tensor The algorithmic procedure is independent of models

Of course, direct contraction is impossible for large N even with current fastest supercomputer

 \Rightarrow How to evaluate the partition function?

Schematic View of TRG Algorithm

- 1. Singular Value Decomposition of local tensor T
- 2. Contraction of old tensor indices (coarse-graining)
- 3. Repeat the iteration

Numerical test for 2d Ising Model

The key element in the algorithm is low-rank approximation by SVD

$$T_{i,j,k,l} \simeq \sum_{m=1}^{D_{\text{cut}}} U_{(i,j),m} \sigma_m V_{m,(k,l)}$$

Truncation error is controlled by the parameter $\mathsf{D}_{\mathsf{cut}}$

Free energy on and off the transition point, lattice size= 2^{30} , D_{cut}=24

Xie et al. PRB86(2012)045139

Comparison with analytic results Relative error of free energy: $\leq 10^{-6}$

TRG vs Monte Carlo

Advantages of TRG

Free from sign problem/complex action problem in MC method

 $Z = \int \mathcal{D}\phi \, \exp(-S_{\rm Re}[\phi] + iS_{\rm Im}[\phi])$

- Computational cost for L^{D} system size $\propto D \times \log(L)$
- Direct manipulation of Grassmann numbers
- Direct evaluation of partition function Z (density matrix ρ) itself

Applications in particle physics :

Finite density QCD, QFTs w/ θ -term, Lattice SUSY etc.

Also, in condensed matter physics

Hubbard model (Mott transition, High Tc superconductivity) etc.

2d models

w/ sign problem

 CP(1) model w/ θ-term : Kawauchi-Takeda, EPJWoC175(2018)11015
 O(3) NLSM : Luo-YK, JHEP03(2024)020
 Real φ⁴ theory : Shimizu, Mod.Phys.Lett.A27(2012)1250035
 Kadoh-YK-Nakamura-Sakai-Takeda-Yoshimura, JHEP05(2019)184
 Complex φ⁴ theory at finite density : Kadoh-YK-Nakamura-Sakai-Takeda-Yoshimura, JHEP02(2020)161

<mark>U(1) gauge theory w/ θ-term</mark> :

YK-Yoshimura, JHEP04(2020)089

<mark>Schwinger(2d QED), Schwinger w/</mark>θ-term:

Shimizu-YK, PRD90(2014)014508, 074503, PRD97(2018)034502

Gross-Neveu model at finite density :

Takeda-Yoshimura, PTEP2015(2015)043B01

N=1 Wess-Zumino model (SUSY):

Kadoh-YK-Nakamura-Sakai-Takeda-Yoshimura, JHEP03(2018)141

Application to models w/ sign problem,

Development of calculational methods for scalar, fermion and gauge fields

TRG Approaches to QFTs (2)

w/ sign problem

3d models

Z₂ gauge Higgs model at finite density : Akiyama-YK,JHEP05(2022)102 Real φ⁴ theory : Akiyama-YK-Yoshimura, PRD104(2021)034507 Z₂gauge theory at finite temperature : YK-Yoshimura, JHEP08(2019)023

4d models

Ising model : Akiyama-YK-Yamashita-Yoshimura, PRD100(2019)054510 Complex φ⁴ theory at finite density :

Akiyama-Kadoh-YK-Yamashita-Yoshimura, JHEP09(2020)177 NJL model at finite density:

Akiyama-YK-Yamashita-Yoshimura, JHEP01(2021)121 Real φ⁴ theory : Akiyama-YK-Yoshimura, PRD104(2021)034507 Z₂ gauge Higgs model at finite density : Akiyama-YK, JHEP05(2022)102 Z₃ gauge Higgs model at finite density : Akiyama-YK, JHEP10(2023)077

 \Rightarrow Research target is shifting from 2d models to 4d ones

TRG Approaches to QFTs (3)

w/ sign problem

9

Condensed matter physics

Similarity btw Hubbard models and NJL ones Action consisting of hopping terms and 4-fermi interaction term

$$S = \sum_{n \in \Lambda_{d+1}} \epsilon \left\{ \bar{\psi}(n) \left(\frac{\psi(n+\hat{\tau}) - \psi(n)}{\epsilon} \right) - t \sum_{\sigma=1}^{d} \left(\bar{\psi}(n+\hat{\sigma})\psi(n) + \bar{\psi}(n)\psi(n+\hat{\sigma}) \right) + \frac{U}{2} (\bar{\psi}(n)\psi(n))^2 - \mu \bar{\psi}(n)\psi(n) \right\}$$

First principle calculation at finite density (1+1)d Hubbard model : Akiyama-YK, PRD104(2021)014504 (2+1)d Hubbard model : Akiyama-YK-Yamashita, PTEP2022(2022)023I01

In this talk we focus on (1+1)d O(3) NLSM Entanglement Entropy (EE) at $\mu = 0$ Direct evaluation of partition function Z (density matrix ρ) itself Quantum phase transition at $\mu \neq 0$ Free from sign problem/complex action problem Determination of dynamical critical exponent z

EE of (1+1)d O(3) NLSM at $\mu=0$

Luo-YK, JHEP03(2024)020

(1+1)d lattice O(3) NLSM (asymptotic free)

$$Z = \int \mathcal{D}[\boldsymbol{s}] e^{-S}$$
$$S = -\beta \sum_{n \in \Lambda_{1+1}, \nu} \boldsymbol{s}(n) \cdot \boldsymbol{s}(n+\hat{\nu})$$

$$\boldsymbol{s}^{T}(\Omega) = (\cos\theta, \sin\theta\cos\phi, \sin\theta\sin\phi)$$
$$\Omega = (\theta, \phi) \quad , \ \theta \in (0, \pi], \ \phi \in (0, 2\pi].$$

 (θ, ϕ) is discretized w/ Gauss-Legendre quadrature \rightarrow TN representation

Entanglement Entropy(EE)

Whole system (V=2L × Nt) is divided to subsystems A, B (V_A,V_B=L × Nt)von NeumannRényi(n-th) $S_A = -\text{Tr}_A \rho_A \log(\rho_A)$ $S_A^{(n)} = \frac{\ln \text{Tr}_A \rho_A^n}{1-n}$ $\rho_A = \frac{1}{Z} \text{Tr}_B [T \cdots T]$ $S_A^{(n)} = \frac{\ln \text{Tr}_A \rho_A^n}{1-n}$

Calculation of EE

Spatial size (L) dependence of EE

Luo-YK, JHEP03(2024)020

von Neumann EE

2nd Rényi EE

 $S_A \sim \frac{c}{3} \ln(\xi)$ (c: central charge, ξ : correlation length)

$$S_A^{(2)} \sim \frac{c}{3} (1 + \frac{1}{2}) \ln(\xi)$$

Convergence at $L \gg \xi$ is confirmed

β	1.4	1.5	1.6	1.7	Wolff,
ξ	6.90(1)	11.09(2)	19.07(6)	34.57(7)	NPB334(1990)581

von Neumann vs Rényi

Luo-YK, JHEP03(2024)020

Comparison btw von Neumann EE(n=1) and Rényi $EE(n\neq 1)$

 $S_A^{(2)}$ is not a good approximation of von Neumann EE(n=1) Difficult to extrapolate $S_A^{(n)}$ (n ≥ 2) to n=1 at high precision Reliable interpolation to n=1 using $S_A^{(1/2)}$ and $S_A^{(n)}$ (n ≥ 2)

Central Charge

3.0

2.5

v 2.0

1.5

Luo-YK, JHEP03(2024)020

c w/ entanglement entropy

12

c w/ Renyi entropy

c=2

mass gap(two loop): $m = \frac{8}{e} \Lambda_{\overline{\text{MS}}} = 64 \Lambda_L = \frac{128\pi}{a} \beta \exp(-2\pi\beta)$

von Neumann EE: $S_A = \frac{c}{3} (2\pi\beta - \ln\beta) + \text{const.}$

n-th Rényi EE:
$$S_A^{(n)} = \frac{c}{6} \left(1 + \frac{1}{n}\right) \left(2\pi\beta - \ln\beta\right) + \text{const.}$$

central charge is determined from β dependence

c=1.97(9) (von Neumann EE) consistent btw different methods c=2.04(4) by Matrix Product State (MPS) Bruckmann+, PRD99(2019)074501 c~2 by finite size spectrum w/ TNR Ueda+, PRE106(2022)014104

1.0012 3 4 5 6 7 8 9 10 11

Quantum phase transition at $\mu \neq 0$

Luo-YK, arXiv:2406.08865

(1+1)d lattice O(3) NLSM at $\mu \neq 0$

$$Z = \int \mathcal{D}[\boldsymbol{s}] e^{-S}$$

$$S = -\beta \sum_{n \in \Lambda_{1+1}, \nu} \sum_{\lambda, \gamma=1}^{3} s_{\lambda}(\Omega_{n}) D_{\lambda\gamma}(\mu, \hat{\nu}) s_{\gamma}(\Omega_{n+\hat{\nu}})$$

$$D(\mu, \hat{\nu}) = \begin{pmatrix} 1 & \cosh(\delta_{2,\nu}\mu) & -i\sinh(\delta_{2,\nu}\mu) \\ i\sinh(\delta_{2,\nu}\mu) & \cosh(\delta_{2,\nu}\mu) \end{pmatrix} \implies \text{complex action}$$

$$\boldsymbol{s}^{T}(\Omega) = (\cos\theta, \sin\theta\cos\phi, \sin\theta\sin\phi)$$

$$\Omega = (\theta, \phi) \quad , \ \theta \in (0, \pi], \ \phi \in (0, 2\pi].$$

 (θ, ϕ) is discretized w/ Gauss-Legendre quadrature \rightarrow TN representation Symmetry btw spatial and temporal directions is broken by μ \Rightarrow Spatial correlation length (ξ) \neq Temporal correlation length (ξ_t) $\xi_t = \xi^z$ with z dynamical critical exponent

Luo-YK, arXiv:2406.08865

Temporal Correlation Length (1)

Luo-YK, arXiv:2406.08865

 ξ_t is obtained from the eigenvalues of density matrix

$$\xi_t = \frac{N_t}{\ln\left(\frac{\lambda_0}{\lambda_1}\right)}$$

 λ_0 and $\lambda_1 are the largest and second largest eigenvalues$

ex. density matrix on 4×4 lattice

Eigenvalues are calculated on reduced single tensor obtained by HOTRG

Temporal Correlation Length (2)

Luo-YK, arXiv:2406.08865

 ξ_t as a function of coarse-graining steps near μ_c

Plateau behaviors are observed for $L > \xi$ at sufficiently low temperature

Temporal Correlation Length (3)

Luo-YK, arXiv:2406.08865

The first successful calculation of dynamical critical exponent with TRG

Advantages of TRG

Free from sign problem/complex action problem in MC method

 $Z = \int \mathcal{D}\phi \, \exp(-S_{\text{Re}}[\phi] + iS_{\text{Im}}[\phi])$

- Direct manipulation of Grassmann numbers
- Direct evaluation of partition function Z itself

Applications in particle physics :

Finite density QCD, QFTs w/ θ-term, Lattice SUSY etc.

Also, in condensed matter physics

Hubbard model (Mott transition, High Tc superconductivity) etc.

Current status : Calculations of 4d theories (scalar, fermion, gauge) are possible ⇒ Extension to Abelian (U(1)) and non-Abelian groups (SU(2), SU(3)) Non-perturbative study of Entanglement Entropy