"Tensor renormalization group study of (1+1)-dimensional $\mathrm{O}(3)$ nonlinear sigma model"

Center for Computational Sciences(CCS), Univ. of Tsukuba Yoshinobu Kuramashi

The $1^{\text {st }}$ TCHoU member meeting in 2024, July 2, 2024

Plan of talk

- Introduction to Tensor Renormalization Group(TRG)
- Application of TRG to Quantum Field Theories(QFTs)
- Entanglement Entropy(EE) of (1+1)d O(3) NLSM at $\mu=0$
- Quantum Phase Transition of (1+1)d O(3) NLSM at $\mu \neq 0$
- Summary and Outlook

Tensor Renormalization Group (TRG)

Details of model are specified in initial tensor The algorithmic procedure is independent of models

Of course, direct contraction is impossible for large N even with current fastest supercomputer
\Rightarrow How to evaluate the partition function?

Schematic View of TRG Algorithm

1. Singular Value Decomposition of local tensor T
2. Contraction of old tensor indices (coarse-graining)
3. Repeat the iteration

Numerical test for 2d Ising Model

The key element in the algorithm is low-rank approximation by SVD

$$
T_{i, j, k, l} \simeq \sum_{m=1}^{\mathrm{D}_{\text {cut }}} U_{(i, j), m} \sigma_{m} V_{m,(k, l)}
$$

Truncation error is controlled by the parameter $\mathrm{D}_{\text {cut }}$

Free energy on and off the transition point, lattice size $=2^{30 \sim 50}, D_{\text {cut }}=24$

Xie et al.
PRB86(2012)045139
Comparison with analytic results Relative error of free energy : $\leq 10^{-6}$

TRG vs Monte Carlo

```
Monte Carlo
    stochastic
```

 antithetical principles
 TRG
deterministic

Advantages of TRG

- Free from sign problem/complex action problem in MC method

$$
Z=\int \mathcal{D} \phi \exp \left(-S_{\mathrm{Re}}[\phi]+i S_{\mathrm{Im}}[\phi]\right)
$$

- Computational cost for L^{D} system size $\propto D \times \log (L)$
- Direct manipulation of Grassmann numbers
- Direct evaluation of partition function Z (density matrix ρ) itself

Applications in particle physics:
Finite density QCD, QFTs w/ θ-term, Lattice SUSY etc.
Also, in condensed matter physics
Hubbard model (Mott transition, High Tc superconductivity) etc.

TRG Approaches to QFTs (1)

2d modelsw/ sign problem
CP(1) model w/ Ө-term : Kawauchi-Takeda, EPJWoC175(2018)11015
O(3) NLSM : Luo-YK, JHEPO3(2024)020
Real ϕ^{4} theory:
Shimizu, Mod.Phys.Lett.A27(2012)1250035
Kadoh-YK-Nakamura-Sakai-Takeda-Yoshimura, JHEP05(2019)184
Complex ϕ^{4} theory at finite density:
Kadoh-YK-Nakamura-Sakai-Takeda-Yoshimura, JHEPO2(2020)161
$\mathrm{U}(1)$ gauge theory w/ θ-term:
YK-Yoshimura, JHEP04(2020)089
Schwinger(2d QED), Schwinger w/ θ-term :Shimizu-YK, PRD90(2014)014508, 074503, PRD97(2018)034502
Gross-Neveu model at finite density:
Takeda-Yoshimura, PTEP2015(2015)043B01
N=1 Wess-Zumino model (SUSY):
Kadoh-YK-Nakamura-Sakai-Takeda-Yoshimura, JHEPO3(2018)141
Application to models w/ sign problem,7
Development of calculational methods for scalar, fermion and gauge fields

TRG Approaches to QFTs (2)

3d models

Z_{2} gauge Higgs model at finite density : Akiyama-YK,JHEPO5(2022)102
Real ϕ^{4} theory : Akiyama-YK-Yoshimura, PRD104(2021)034507
Z_{2} gauge theory at finite temperature: YK-Yoshimura, JHEP08(2019)023

4d models

Ising model : Akiyama-YK-Yamashita-Yoshimura, PRD100(2019)054510
Complex ϕ^{4} theory at finite density:
Akiyama-Kadoh-YK-Yamashita-Yoshimura, JHEPO9(2020)177
NJL model at finite density:
Akiyama-YK-Yamashita-Yoshimura, JHEP01(2021)121
Real ϕ^{4} theory : Akiyama-YK-Yoshimura, PRD104(2021)034507
Z_{2} gauge Higgs model at finite density: Akiyama-YK, JHEPO5(2022)102
Z_{3} gauge Higgs model at finite density:Akiyama-YK, JHEP10(2023)077
\Rightarrow Research target is shifting from 2d models to 4d ones

TRG Approaches to QFTs (3)

Condensed matter physics
Similarity btw Hubbard models and NJL ones
Action consisting of hopping terms and 4 -fermi interaction term

$$
S=\sum_{n \in \Lambda_{d+1}} \epsilon\left\{\bar{\psi}(n)\left(\frac{\psi(n+\hat{\tau})-\psi(n)}{\epsilon}\right)-t \sum_{\sigma=1}^{d}(\bar{\psi}(n+\hat{\sigma}) \psi(n)+\bar{\psi}(n) \psi(n+\hat{\sigma}))+\frac{U}{2}(\bar{\psi}(n) \psi(n))^{2}-\mu \bar{\psi}(n) \psi(n)\right\}
$$

First principle calculation at finite density
(1+1)d Hubbard model:Akiyama-YK, PRD104(2021)014504
(2+1)d Hubbard model: Akiyama-YK-Yamashita, PTEP2022(2022)023I01

In this talk we focus on (1+1)d O(3) NLSM
Entanglement Entropy (EE) at $\mu=0$
Direct evaluation of partition function Z (density matrix ρ) itself
Quantum phase transition at $\mu \neq 0$
Free from sign problem/complex action problem
Determination of dynamical critical exponent z

EE of ($1+1$)d O(3) NLSM at $\mu=0$

Luo-YK, JHEPO3(2024)020
(1+1)d lattice O(3) NLSM (asymptotic free)

$$
\begin{gathered}
Z=\int \mathcal{D}[s] e^{-S} \\
S=-\beta \sum_{n \in \Lambda_{1+1}, \nu} s(n) \cdot \boldsymbol{s}(n+\hat{\nu}) \\
\boldsymbol{s}^{T}(\Omega)=(\cos \theta, \sin \theta \cos \phi, \sin \theta \sin \phi) \\
\Omega=(\theta, \phi) \quad, \quad \theta \in(0, \pi], \phi \in(0,2 \pi] .
\end{gathered}
$$

(θ, ϕ) is discretized $w /$ Gauss-Legendre quadrature \rightarrow TN representation

Entanglement Entropy(EE)
Whole system $(\mathrm{V}=2 \mathrm{~L} \times \mathrm{Nt})$ is divided to subsystems $A, B\left(V_{A}, V_{B}=L \times N t\right)$
von Neumann

$$
\begin{gathered}
S_{A}=-\operatorname{Tr}_{A} \rho_{A} \log \left(\rho_{A}\right) \\
\rho_{A}=\frac{1}{Z} \operatorname{Tr}_{B}[T \cdots T]
\end{gathered}
$$

Rényi(n-th)

$$
S_{A}^{(n)}=\frac{\ln \operatorname{Tr}_{A} \rho_{A}^{n}}{1-n}
$$

Calculation of EE

von Neumann EE

Divided into subsystems A and B

Trace out in terms of subsystem $B\left(\operatorname{Tr}_{B}\right)$

Coarse-graining w/ HOTRG

n-th Rényi EE

Tr_{B} for subsystem B on each sheet of n - times copied system

Coarse-graining w/ HOTRG

Spatial size (L) dependence of EE

Luo-YK, JHEPO3(2024)020

von Neumann EE

$2^{\text {nd }}$ Rényi EE

$S_{A} \sim \frac{c}{3} \ln (\xi)$ (c: central charge, ξ : correlation length) $\quad S_{A}^{(2)} \sim \frac{c}{3}\left(1+\frac{1}{2}\right) \ln (\xi)$ Convergence at $L \gg \xi$ is confirmed

β	1.4	1.5	1.6	1.7	Wolff,
ξ	$6.90(1)$	$11.09(2)$	$19.07(6)$	$34.57(7)$	NPB334(1990)581

von Neumann vs Rényi

Luo-YK, JHEPO3(2024)020
Comparison btw von Neumann $E E(n=1)$ and Rényi $E E(n \neq 1)$

$S_{A}{ }^{(2)}$ is not a good approximation of von Neumann $E E(n=1)$ Difficult to extrapolate $S_{A}{ }^{(n)}(n \geq 2)$ to $n=1$ at high precision Reliable interpolation to $n=1$ using $S_{A}{ }^{(1 / 2)}$ and $S_{A}{ }^{(n)}(n \geq 2)$

Central Charge

Luo-YK, JHEPO3(2024)020

mass gap(two loop): $m=\frac{8}{e} \Lambda_{\overline{M S}}=64 \Lambda_{L}=\frac{128 \pi}{a} \beta \exp (-2 \pi \beta)$ von Neumann EE: $S_{A}=\frac{c}{3}(2 \pi \beta-\ln \beta)+$ const.
n-th Rényi EE: $\quad S_{A}^{(n)}=\frac{c}{6}\left(1+\frac{1}{n}\right)(2 \pi \beta-\ln \beta)+$ const. central charge is determined from β dependence

c=1.97(9) (von Neumann EE) consistent btw different methods c=2.04(4) by Matrix Product State (MPS) Bruckmann+, PRD99(2019)074501 $\mathrm{c} \sim 2$ by finite size spectrum w/ TNR Ueda+, PRE106(2022)014104

Quantum phase transition at $\mu \neq 0$

Luo-YK, arXiv:2406.08865
(1+1)d lattice O(3) NLSM at $\mu \neq 0$

$$
\begin{aligned}
& Z=\int \mathcal{D}[s] e^{-S} \\
& S=-\beta \sum_{n \in \Lambda_{1+1}, \nu} \sum_{\lambda, \gamma=1}^{3} s_{\lambda}\left(\Omega_{n}\right) D_{\lambda \gamma}(\mu, \hat{\nu}) s_{\gamma}\left(\Omega_{n+\hat{\nu}}\right) \\
& D(\mu, \hat{\nu})=\left(\begin{array}{rr}
1 & \cosh \left(\delta_{2, \nu} \mu\right)-i \sinh \left(\delta_{2, \nu} \mu\right) \\
i \sinh \left(\delta_{2, \nu} \mu\right) & \cosh \left(\delta_{2, \nu} \mu\right)
\end{array}\right) \neg \text { complex action } \\
& s^{T}(\Omega)=(\cos \theta, \sin \theta \cos \phi, \sin \theta \sin \phi) \\
& \Omega=(\theta, \phi) \quad, \theta \in(0, \pi], \phi \in(0,2 \pi] .
\end{aligned}
$$

(θ, ϕ) is discretized w/ Gauss-Legendre quadrature \rightarrow TN representation Symmetry btw spatial and temporal directions is broken by μ
\Rightarrow Spatial correlation length $(\xi) \neq$ Temporal correlation length $\left(\xi_{t}\right)$

$$
\xi_{t}=\xi^{z} \text { with } z \text { dynamical critical exponent }
$$

Number Density

Luo-YK, arXiv:2406.08865
number density: $\langle n\rangle=\frac{\partial}{\partial \mu} f \approx \frac{-1}{L N_{t}} \frac{\ln Z(\mu+\Delta \mu)-\ln Z(\mu-\Delta \mu)}{2 \Delta \mu}$

Simultaneous fit with $\langle n\rangle\left(\mu, D_{\text {cut }}\right)=A_{n} \cdot\left\{\mu-\left(\mu_{\mathrm{c}}+B_{n} / D_{\text {cut }}\right)\right\}^{\nu}$

$$
\Rightarrow v=0.512(15), \mu_{c}=0.14512(11)
$$

μ_{c} is consistent with mass gap $\mathrm{m}=0.1449(2)$ at $\mu=0$

Temporal Correlation Length (1)

ξ_{t} is obtained from the eigenvalues of density matrix

$$
\xi_{t}=\frac{N_{t}}{\ln \left(\frac{\lambda_{0}}{\lambda_{1}}\right)}
$$

λ_{0} and λ_{1} are the largest and second largest eigenvalues
ex. density matrix on 4×4 lattice

Eigenvalues are calculated on reduced single tensor obtained by HOTRG

Temporal Correlation Length (2)

Luo-YK, arXiv:2406.08865

Plateau behaviors are observed for $L>\xi$ at sufficiently low temperature

Temporal Correlation Length (3)

Luo-YK, arXiv:2406.08865

Simultaneous fit with $\ln \xi_{t}\left(\mu, D_{\text {cut }}\right)=A_{\xi}+\alpha \ln \left|\mu-\left(\mu_{\mathrm{c}}+B_{\xi} / D_{\text {cut }}\right)\right|$

$$
\Rightarrow \alpha=z v=1.003(5), z=1.96(6)
$$

The first successful calculation of dynamical critical exponent with TRG

Summary and Outlook

Advantages of TRG

- Free from sign problem/complex action problem in MC method

$$
Z=\int \mathcal{D} \phi \exp \left(-S_{\mathrm{Re}}[\phi]+i S_{\operatorname{Im}}[\phi]\right)
$$

- Computational cost for L^{D} system size $\propto \mathrm{D} \times \log (\mathrm{L})$
- Direct manipulation of Grassmann numbers
- Direct evaluation of partition function Z itself

Applications in particle physics:
Finite density QCD, QFTs w/ θ-term, Lattice SUSY etc.
Also, in condensed matter physics
Hubbard model (Mott transition, High Tc superconductivity) etc.
Current status: Calculations of 4d theories (scalar, fermion, gauge) are possible
\Rightarrow Extension to Abelian (U(1)) and non-Abelian groups (SU(2), SU(3)) Non-perturbative study of Entanglement Entropy

