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Plan of talk

• Introduction to Tensor Renormalization Group(TRG)
• Application of TRG to Quantum Field Theories(QFTs)
• Entanglement Entropy(EE) of (1+1)d O(3) NLSM at 𝜇 = 0
• Quantum Phase Transition of (1+1)d O(3) NLSM at 𝜇 ≠ 0
• Summary and Outlook



Tensor Renormalization Group (TRG)

Explain the algorithm with 2D Ising model with N sites

Details of model are specified in initial tensor
The algorithmic procedure is independent of  models

Of course, direct contraction is impossible for large N even with current 
fastest supercomputer   
⇒ How to evaluate the partition function?

H =
∑

⟨i,j⟩
sisj si ± 1

Z =
∑

{Si}
exp (−βH)

=
2∑

i,j,k,l,···=1
Ti,m,n,lTs,t,i,jTr,j,k,qTk,l,o,p · · ·

Z =
∫
DU det D({U}) e−Sg({U})

⟨O⟩ =
∫
DU O({U,D−1}) det D({U}) e−Sg({U})

P =
1

Z
det D({U}) e−Sg({U})

Z =
∑

i,j,k,...
e−S(i,j,k,...) =

∑

i,j,k,...
TijklTimnoTjpqrTksuvTlwxy · · · .

ZQCD(T, µ) =
∫
DUe−Sg[U ] det D(µ; U)

⟨O⟩ =
⟨OeiNfθ⟩||
⟨eiNfθ⟩||

⟨O⟩ =
⟨Oeiθ⟩||
⟨eiθ⟩||

Z||(T, µ) =
∫
DUe−Sg[U ]| det D(µ; U)|

U = 1 − 1

3

⟨X4⟩
⟨X2⟩2
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Hamiltonian

Partition Function

Tensor Network representation

χ(L) =
1

L2

∂2 ln Z

∂(1/2κ)2

Z =
∫
DψDψ̄DU e−ψ̄D[U ]ψ−Sg[U ]

Ti,j,k,l ≃
Dcut∑

m=1
U(i,j),mσmVm,(k,l)

H =
∑

⟨i,j⟩
sisj si ± 1

Z =
∑

{si}
exp (−βH)

=
2∑

α,β,γ,δ,···=1
Tα,λ,ρ,δTσ,κ,α,βTµ,β,γ,τTγ,δ,ν,χ · · ·

Z =
∫
DU det D({U}) e−Sg({U})

⟨O⟩ =
∫
DU O({U,D−1}) det D({U}) e−Sg({U})

P =
1

Z
det D({U}) e−Sg({U})

Z =
∑

i,j,k,...
e−S(i,j,k,...) =

∑

i,j,k,...
TijklTimnoTjpqrTksuvTlwxy · · · .

ZQCD(T, µ) =
∫
DUe−Sg[U ] det D(µ; U)

⟨O⟩ =
⟨OeiNfθ⟩||
⟨eiNfθ⟩||
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Schematic View of TRG Algorithm
1. Singular Value Decomposition of local tensor T
2. Contraction of old tensor indices (coarse-graining)
3. Repeat the iteration  

Keep largest Dcut components
⇒ Reduction of freedom

#sites are reduced to half

Tensors 
w/ new indices



Numerical test for 2d Ising Model

The key element in the algorithm is low-rank approximation by SVD

Truncation error is controlled by the parameter Dcut

Free energy on and off the transition point, lattice size=230〜50, Dcut=24

Xie et al. 
PRB86(2012)045139

Comparison with analytic results
Relative error of free energy：≤10−6

XIE, CHEN, QIN, ZHU, YANG, AND XIANG PHYSICAL REVIEW B 86, 045139 (2012)

FIG. 4. (Color online) Comparison of the relative errors of free
energy with respect to the exact results for the 2D Ising model
obtained by various methods with D = 24. The critical temperature
Tc = 2/ ln(1 +

√
2).

is already less than 10−7 even at the critical temperature,
much more accurate than the TRG result.7,8 The HOSRG also
performs better than the SRG. But the difference in the results
obtained by these two methods is relatively small around the
critical point. The HOTRG is less accurate than the two SRG
methods, but it is computationally economic. The difference
between TRG/SRG and HOTRG/HOSRG lies mainly in the
basis truncation scheme. The former is based on the SVD,
while the latter is based on the HOSVD. The above comparison
indicates that the HOSVD scheme works better.

III. THREE-DIMENSIONAL SYSTEMS

The above HOTRG and HOSRG methods can be readily
extended to three dimensions. This is an advantage of the
coarse-graining scheme proposed here. On the cubic lattice, a
full cycle of lattice contraction needs to be done in three steps,
along the x axis, y axis, and z axis, respectively. At each step,
two neighboring tensors will be combined to form a single
coarse-grained tensor and the lattice size is reduced by a factor
of 2.

As an example, Fig. 5 shows how the tensors are contracted
along the z axis. The HOSVD of the coarse-grained local
tensor [Fig. 5(b)] can be similarly done as for the 2D case. But
the local tensor now has six bond indices and a HOSVD for a
higher-order tensor should be done. Moreover, the basis spaces
for both the x-axis and y-axis bonds need to be renormalized.
Thus we should determine from the core tensor and the unitary
matrices of M (n) not only the transformation matrix for the
x-direction bonds U (n), but also the transformation matrix
for the y-direction bonds V (n). After that the dimensions for
both x-axis and y-axis bonds are truncated and the local
tensor is updated using U (n) and V (n). The contraction and
renormalization of tensors along the other two directions can
be similarly done. This three-step iteration can then be repeated
until the results are converged.

After the above HOTRG iteration, one can also do a
backward iteration to evaluate the environment tensors and
carry out the HOSRG calculation in three dimensions. A
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FIG. 5. (Color online) (a) A HOTRG coarse-graining step along
the z axis on the cubic lattice. (b) Steps of contraction and
renormalization of two local tensors.

graphical representation for iteratively determining the envi-
ronment tensor in this backward iteration is shown in Fig. 6.
A series of forward-backward iterations is then performed
to take into account the second renormalization effect of the
environment to the coarse-grained tensors. In the subsequent
forward iterations, we evaluate and diagonalize the bond
density matrix (see Fig. 7) and update the coarse-grained
tensors. The environment tensors are evaluated again in the
backward iteration.

In the 3D calculation, the computational time scales with
D11 and the memory scales with D6. This cost in the
computational resource is significantly smaller than in other
3D numerical RG methods.11–17,19 We have studied the 3D
Ising model using the HOTRG for D up to 16.

The temperature dependence of the internal energy U and
the specific heat C for the 3D Ising model obtained by the
HOTRG with D = 14 is shown in Fig. 8 and compared with

l r

f

b

u

d

i j

m

n k
U
(n+1)

E
(n+1)

E
(n)

T
(n)

V
(n+1)

FIG. 6. (Color online) Graphical representation for the deter-
mination of the environment tensor E
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dimensions.
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TRG vs Monte Carlo

Advantages of TRG
・ Free from sign problem/complex action problem in MC method

・ Computational cost for LD system size ∝ D×log(L)
・ Direct manipulation of Grassmann numbers
・ Direct evaluation of partition function Z (density matrix ρ) itself

Applications in particle physics：
Finite density QCD, QFTs w/ θ-term, Lattice SUSY etc.

Also, in condensed matter physics
Hubbard model (Mott transition, High Tc superconductivity) etc.

Z =
∫
Dφ exp(−SRe[φ] + iSIm[φ])

Z =
⎛

⎝
∏

x,µ

∫ π

−π

dϕx,µ

2π

⎞

⎠
∏

x
T (ϕx,1,ϕx+1̂,2,ϕx+2̂,1,ϕx,2)

T (ϕx,1,ϕx+1̂,2,ϕx+2̂,1,ϕx,2) = exp
⎛

⎝β cos px + i
θ

2π
qx

⎞

⎠

Z =
⎛

⎝
∏

x,µ

∫ π

−π

dϕx,µ

2π

⎞

⎠ exp (−S)

Ti,j,k,l ⇒ T{j,k},{l,i} =
(
UΛV t

)

{j,k},{l,i}
=

∑

m

(
U
√

Λ
)

{j,k},m

(
V
√

Λ
)

{l,i},m
=

∑

m
(S1){j,k},m (S3){l,i},m

Ti,j,k,l ⇒ T{k,l},{i,j} =
(
UΛV t

)

{k,l},{i,j}
=

∑

m

(
U
√

Λ
)

{k,l},m

(
V
√

Λ
)

{i,j},m
=

∑

m
(S2){k,l},m (S4){i,j},m

T (new)
o,n,m,p =

∑

i,j,k,l
(S4){l,k},o (S3){k,j},n (S2){j,i},m (S1){i,l},p

Ti,j,k,l ≃
Dcut∑

m=1
U{k,l},mΛmV{i,j},m

Scont =
∫

d2x
{
|∂ρφ|2 + (m2 − µ2)|φ|2 + µ(φ∗∂2φ − ∂2φ

∗φ) + λ|φ|4
}

Z =
∫
Dφ exp(−S)

1

Monte Carlo
stochastic

TRG
deterministic

antithetical principles
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TRG Approaches to QFTs (1)

2d models
CP(1) model w/ θ-term：Kawauchi-Takeda, EPJWoC175(2018)11015
O(3) NLSM：Luo-YK, JHEP03(2024)020
Real φ4 theory：

Shimizu, Mod.Phys.Lett.A27(2012)1250035
Kadoh-YK-Nakamura-Sakai-Takeda-Yoshimura, JHEP05(2019)184

Complex φ4 theory at finite density：
Kadoh-YK-Nakamura-Sakai-Takeda-Yoshimura, JHEP02(2020)161

U(1) gauge theory w/ θ-term：
YK-Yoshimura, JHEP04(2020)089

Schwinger(2d QED), Schwinger w/ θ-term：
Shimizu-YK, PRD90(2014)014508, 074503, PRD97(2018)034502 

Gross-Neveu model at finite density：
Takeda-Yoshimura, PTEP2015(2015)043B01

N=1 Wess-Zumino model (SUSY)：
Kadoh-YK-Nakamura-Sakai-Takeda-Yoshimura, JHEP03(2018)141

Application to models w/ sign problem，
Development of calculational methods for scalar, fermion and gauge fields

w/ sign problem
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TRG Approaches to QFTs (2)

3d models
Z2 gauge Higgs model at finite density：Akiyama-YK,JHEP05(2022)102
Real φ4 theory：Akiyama-YK-Yoshimura, PRD104(2021)034507
Z2gauge theory at finite temperature： YK-Yoshimura, JHEP08(2019)023

4d models
Ising model：Akiyama-YK-Yamashita-Yoshimura, PRD100(2019)054510
Complex φ4 theory at finite density：

Akiyama-Kadoh-YK-Yamashita-Yoshimura, JHEP09(2020)177
NJL model at finite density：

Akiyama-YK-Yamashita-Yoshimura, JHEP01(2021)121
Real φ4 theory：Akiyama-YK-Yoshimura, PRD104(2021)034507
Z2 gauge Higgs model at finite density：Akiyama-YK, JHEP05(2022)102
Z3 gauge Higgs model at finite density：Akiyama-YK, JHEP10(2023)077

⇒ Research target is shifting from 2d models to 4d ones

w/ sign problem
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TRG Approaches to QFTs (3)

Condensed matter physics
Similarity btw Hubbard models and NJL ones
Action consisting of hopping terms and 4-fermi interaction term

First principle calculation at finite density
(1+1)d Hubbard model：Akiyama-YK, PRD104(2021)014504
(2+1)d Hubbard model：Akiyama-YK-Yamashita, PTEP2022(2022)023I01

sufficiently large to be identified as the thermodynamic
and zero-temperature limit. The half-filling state is char-
acterized by the plateau with hni ¼ 1 in the range of
1.3≲ μ≲ 2.7. We also observe the continuous change from
hni ¼ 1 to hni ¼ 2 over the range of 2.7≲ μ≲ 6.5.
Figure 6 shows μ dependence of hni near the criticality
on V ¼ 4096 × 1677.7216. The abrupt change of hni at
μ ≈ 2.70 in Fig. 6 indicates a metal-insulator transition.
We determine the critical chemical potential μcðDÞ and

the critical exponent ν on V ¼ 4096 × 1677.7216 lattice by
fitting hni in the metallic phase around the transition point
with the following form:

hni ¼ Aþ Bjμ − μcðDÞjν; ð8Þ

where A, B, μcðDÞ and ν are the fit parameters. The solid
curve in Fig. 6 shows the fitting result over the range of
2.68 ≤ μ ≤ 3.00. We obtain μcðDÞ ¼ 2.698ð1Þ and ν ¼
0.51ð2Þ at D ¼ 80. Our result for the critical exponent is
consistent with the theoretical prediction of ν ¼ 1=2. A
previous quantumMonte Carlo simulation with small spatial
extensionup toL ¼ 24 alsoyielded the sameconclusion [22].
In order to extrapolate the result of μcðDÞ to the limit

D → ∞, we repeat the calculation changing D. The
numerical results are summarized in Table III. In Fig. 7,
we plot μcðDÞ as a function of 1=D, providing two types of
fittings. The solid line shows the fitting result with the

function μcðDÞ ¼ μc þ aD−1, which gives us μc ¼
2.642ð5Þ and a ¼ 4.5ð4Þ with χ2=d:o:f ¼ 0.447093. We
have also fitted the data with the function μcðDÞ ¼ μc þ
bD−c, shown as the dotted curve in Fig. 7, to estimate an
uncertainty in the choice of the fitting function. The
difference between the central values of μc obtained by
these two types of fittings is considered to be a systematic
error. Finally, we obtain μc ¼ 2.642ð05Þð13Þ as the value
of limD→∞ μcðDÞ, which shows good consistency with
the exact solution of μc ¼ 2.643 % % % based on the Bethe
ansatz [16,17].

IV. SUMMARY AND OUTLOOK

We have investigated the metal-insulator transition of the
(1þ 1)d Hubbard model in the path-integral formalism
employing the TRG method. Extrapolating μcðDÞ to the
limit D → ∞, we have estimated the critical chemical
potential, which shows good consistency with the theo-
retical prediction based on the Bethe ansatz. We have
determined the critical exponent ν, which is also consistent
with the exact solution. These encouraging results show the
effectiveness of the TRG approach for the study of the
Hubbard model and the related fermion models being free
from the sign problem. It is worth emphasizing that the
TRG approach is efficient not only in the lower-dimen-
sional systems but also in the higher-dimensional ones, as
confirmed in the earlier works [2,4–7,14,15,23–26]. As a
next step, we are planning to investigate the phase diagram
of the higher-dimensional Hubbard models, improving the
TRG method successfully applied in this work.
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APPENDIX: GRASSMANN TENSOR FOR
(d + 1)-DIMENSIONAL HUBBARD MODEL

In this Appendix, we consider the tensor network
representation for the path integral of the (dþ 1)-dimen-
sional Hubbard model, whose action is given by

S¼
X

n∈Λdþ1

ϵ
!
ψ̄ðnÞ

"
ψðnþ τ̂Þ−ψðnÞ

ϵ

#
− t

Xd

σ¼1

ðψ̄ðnþ σ̂ÞψðnÞþ ψ̄ðnÞψðnþ σ̂ÞÞþU
2
ðψ̄ðnÞψðnÞÞ2 −μψ̄ðnÞψðnÞ

$
; ðA1Þ

where n ¼ ððnσÞσ¼1;…;d; nτÞ ∈ Λdþ1, which denotes the (dþ 1)-dimensional anisotropic lattice. Since the hopping terms in
Eq. (A1) are all diagonal in the internal space, we can immediately have the following decompositions,

0.000 0.005 0.010 0.015 0.020
1/D

2.64

2.66

2.68

2.70

2.72

2.74

µ c(D
)

µc+aD
-1

µc+bD
-c

FIG. 7. Critical chemical potential μcðDÞ as a function of 1=D.
Solid line represents the fitting result with the function
μcðDÞ ¼ μc þ aD−1. Dotted curve also shows the fitting result
with the function μcðDÞ ¼ μc þ bD−c.
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In this talk we focus on (1+1)d O(3) NLSM
Entanglement Entropy (EE) at 𝜇 = 0

Direct evaluation of partition function Z (density matrix ρ) itself        
Quantum phase transition at 𝜇 ≠ 0

Free from sign problem/complex action problem
Determination of dynamical critical exponent z

w/ sign problem



(1+1)d lattice O(3) NLSM (asymptotic free)

(𝜃, 𝜙) is discretized w/ Gauss-Legendre quadrature → TN representation

Entanglement Entropy(EE)
Whole system (V=2L×Nt) is divided to subsystems A, B (VA,VB=L×Nt)

von Neumann                                               Rényi(n-th)

EE of (1+1)d O(3) NLSM at 𝜇 = 0
Luo-YK, JHEP03(2024)020

This paper is organized as follows. In Sec. 2, we define the (1+1)d O(3) NLSM on the

lattice and give the tensor network representation. We present the numerical results for the

entanglement and Rényi entropies in Sec. 3. We determine the central charge and discuss

the consistency between the entanglement and Rényi entropies. Section 4 is devoted to

summary and outlook.

2 Formulation and numerical algorithm

Although the definition of the (1+1)d O(3) NLSM and its tensor network representation

are already given in the appendix of Ref. [28], we briefly give the relevant expressions for

this work to make this paper self-contained.

2.1 (1+1)-dimensional O(3) nonlinear sigma model

We consider the partition function of the O(3) NLSM on an isotropic hypercubic lattice

⇤1+1 = {(n1, n2) |n1 = 1, . . . , 2L, n2 = 1, . . . , Nt} whose volume is V = (2L) ⇥ Nt. The

lattice spacing a is set to a = 1 unless necessary. The O(3) matrix s(n) resides on the sites

n and satisfies the periodic boundary conditions s(n+ ⌫̂L) = s(n) (⌫ = 1, 2). The lattice

action S is defined as

S = ��
X

n2⇤1+1,⌫

s(n) · s(n+ ⌫̂). (2.1)

The partition function Z is given by

Z =

Z
D[s]e�S , (2.2)

where D[s] is the O(3) Haar measure, whose expression is given later.

2.2 Tensor network representation of the model

The O(3) matrix in the model can be expressed as

sT (⌦) = (cos ✓, sin ✓ cos�, sin ✓ sin�)

⌦ = (✓,�) , ✓ 2 (0,⇡], � 2 (0, 2⇡].
(2.3)

The partition function and its measure are written as

Z =

Z
D⌦

Y

n,⌫

e�si(⌦n)si(⌦n+⌫̂) , (2.4)

D⌦ =
VY

p=1

1

4⇡
sin(✓p)d✓pd�p . (2.5)

We discretize the integration (2.4) with the Gauss-Legendre quadrature [11, 20] after chang-

ing the integration variables:

�1  ↵ =
1

⇡
(2✓ � ⇡)  1, (2.6)

�1  � =
1

⇡
(�� ⇡)  1. (2.7)
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summary and outlook.

2 Formulation and numerical algorithm

Although the definition of the (1+1)d O(3) NLSM and its tensor network representation

are already given in the appendix of Ref. [28], we briefly give the relevant expressions for

this work to make this paper self-contained.

2.1 (1+1)-dimensional O(3) nonlinear sigma model

We consider the partition function of the O(3) NLSM on an isotropic hypercubic lattice

⇤1+1 = {(n1, n2) |n1 = 1, . . . , 2L, n2 = 1, . . . , Nt} whose volume is V = (2L) ⇥ Nt. The

lattice spacing a is set to a = 1 unless necessary. The O(3) matrix s(n) resides on the sites

n and satisfies the periodic boundary conditions s(n+ ⌫̂L) = s(n) (⌫ = 1, 2). The lattice

action S is defined as

S = ��
X

n2⇤1+1,⌫

s(n) · s(n+ ⌫̂). (2.1)

The partition function Z is given by

Z =

Z
D[s]e�S , (2.2)

where D[s] is the O(3) Haar measure, whose expression is given later.

2.2 Tensor network representation of the model

The O(3) matrix in the model can be expressed as

sT (⌦) = (cos ✓, sin ✓ cos�, sin ✓ sin�)

⌦ = (✓,�) , ✓ 2 (0,⇡], � 2 (0, 2⇡].
(2.3)

The partition function and its measure are written as

Z =

Z
D⌦

Y

n,⌫

e�si(⌦n)si(⌦n+⌫̂) , (2.4)

D⌦ =
VY

p=1

1

4⇡
sin(✓p)d✓pd�p . (2.5)

We discretize the integration (2.4) with the Gauss-Legendre quadrature [11, 20] after chang-

ing the integration variables:

�1  ↵ =
1

⇡
(2✓ � ⇡)  1, (2.6)

�1  � =
1

⇡
(�� ⇡)  1. (2.7)
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⌫

M⌦n,⌦n+⌫̂ (2.8)

with ⌦n = (✓(↵an),�(�bn)) ⌘ (an, bn), where ↵an and �bn are a- and b-th roots of the K-th

Legendre polynomial PK(s) on the site n, respectively.
P

{⌦n} denotes
PK

an=1

PK
bn=1. M

is a 4-legs tensor defined by

Man,bn,an+⌫̂ ,bn+⌫̂
= exp {�si(an, bn)si(an+⌫̂ , bn+⌫̂)} . (2.9)

The weight factor w of the Gauss-Legendre quadrature is defined as

wan =
2(1� ↵an

2)

K2P 2
K�1(↵an)

, wbn =
2(1� �bn

2)

K2P 2
K�1(�bn)

. (2.10)

After performing the singular value decomposition (SVD) on M :

Man,bn,an+⌫̂ ,bn+⌫̂
'

DcutX

in=1

Uan,bn,in(⌫)�in(⌫)V
†
in,an+⌫̂ ,bn+⌫̂

(⌫), (2.11)

we can obtain the tensor network representation of the O(3) NLSM on the site n 2 ⇤1+1

Txn,x0
n,yn,y

0
n
=

⇡

8

q
�xn(1)�x0

n
(1)�yn(2)�y0n(2)

X

an,bn

wanwbn

⇥ V †
xn,an,bn

(1)Uan,bn,x0
n
(1)V †

yn,an,bn
(2)Uan,bn,y0n(2), (2.12)

where Dcut is the bond dimension of tensor T , which controls the numerical precision in

the TRG method. The tensor network representation of partition function is given by

Z '
X

x0x0
0y0y

0
0···

Y

n2⇤1+1

Txnx0
nyny

0
n
= Tr [T · · ·T ] . (2.13)

We employ the higher order tensor renormalization group (HOTRG) algorithm [2] to eval-

uate Z.

2.3 Calculation of entanglement and Rényi entropies

Figure 1 illustrates the calculation procedure of the entanglement entropy. We divide the

system to two subsystems A and B, both of which have the same lattice size with L⇥Nt.

The density matrix of subsystem A is defined by ⇢A = 1
ZTrB[T · · ·T ], where TrB denotes the

trace restricted to the subsystem B. We use HOTRG to approximate the density matrix of

subsystem A, in which ⇢A ' 1
ZTrBTxx0yBy0B

Tx0xyAy0A
= MyA,y0A

. The entanglement entropy

is obtained by

SA = �TrA⇢A log(⇢A). (2.14)

Figure 2 depicts the calculation procedure of the nth-order Rényi entropy defined by

S(n)
A =

lnTrA⇢nA
1� n

, (2.15)
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where ⇢nA can be calculated by just computing the nth matrix power of ⇢A.

(a) Divide the system to two
subsystems A and B.

(b) Trace all legs for subsys-
tem B.

(c) Figure 1b is coarse-grained
to this with HOTRG.

Figure 1: Calculation of entanglement entropy.

(a) Graphical representation of nth-order Rényi entropy ⇢(n)A .

(b) Figure 2a is coarse-grained to this with HOTRG.

Figure 2: Calculation of nth-order Rényi entropy.

3 Numerical results

The density matrix ⇢A is evaluated using HOTRG with the bond dimensionDcut 2 [10, 130].

Note that the correlation length ⇠ in this model was precisely measured over the range of

1.4  �  1.9 with the interval of �� = 0.1 in Ref. [29]. We list the values of ⇠ in Table 1

for later convenience. In order to keep the condition a ⌧ ⇠ ⌧ L, our results are restricted

to 1.4  �  1.7 2 in the following.

Figure 3 shows the Nt dependence of the entanglement entropy SA(L) at � = 1.5 with

L = 128, where the correlation length is expected to be ⇠ ⇠ 11 [29]. The degeneracy of

the results for SA(L) with Nt = 256, 512 and 1024 indicates the convergence of SA(L) in

2This is an intermediate region from the strong coupling to the weak one. See Fig. 8 in Ref. [28].
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Figure 8: Nt dependence of 2nd-order Rényi entropy at � = 1.5. The bond dimension is

Dcut = 130.
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Figure 9: L dependence of 2nd-order Rényi entropy with Nt = 1024 at � = 1.4, 1.5, 1.6

and 1.7. The bond dimension is Dcut = 130.
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Figure 3: Nt dependence of entanglement entropy at � = 1.5. The bond dimension is

Dcut = 130.
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Figure 4: L dependence of entanglement entropy with Nt = 1024 at � = 1.4, 1.5, 1.6 and

1.7. The bond dimension is Dcut = 130.
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Comparison btw von Neumann EE(n=1) and Rényi EE(n≠1)

SA
(2) is not a good approximation of von Neumann EE(n=1)

Difficult to extrapolate SA
(n) (n≥2) to n=1 at high precision

Reliable interpolation to n=1 using SA
(1/2) and SA

(n) (n≥2)

Actually, previous Monte Carlo studies on the (3+1)d pure SU(N) gauge theories calculate

the UV finite observable @LS
(2)
A (L) instead of @LSA(L) assuming SA is close to S(2)

A [24–

26]. As observed in Fig. 6, the entanglement entropy shows sizable di↵erence from the

2nd-order Rényi entropy. This fact implies that the extrapolation of the nth-order Rényi

entropy to n = 1 might be troublesome. It is worthwhile to check the n dependence of

the nth-order Rényi entropy and investigate how reliably we can extrapolate it to n = 1.

In Fig. 12 we plot the n-th order Rényi entropy as a function of n together with the

entanglement entropy at n = 1. Note that S(1/2)
A is obtained by taking the square root of

the density matrix. The dotted blue and green curves represent the fit results of the Rényi

entropy at n = 2, ..., 5 and n = 2, ..., 11 employing the third and sixth order polynomial

functions, respectively. The extrapolated value to n = 1 shows sizable deviation from the

directly measured entanglement entropy. It seems di�cult to obtain the correct value of the

entanglement entropy by an extrapolation of the nth order Rényi entropy at n � 2. On the

other hand, the interpolations of the Rényi entropy at n = 1/2, 2, ..., 4 and n = 1/2, 2, ..., 11

with the third and sixth order polynomial functions, respectively, which are denoted by the

pink and purple curves in Fig. 12, give consistent results with the entanglement entropy at

n = 1.

0 1 2 3 4 5 6 7 8 9 10 11 12
n

0.5

1.0

1.5

2.0

2.5

3.0

S A
(n

)

extrapolate with n=2~5, 3rd order polynomial
extrapolate with n=2~11, 6th order polynominal
interpolate with n=1/2~4, 3rd order polynomial
interpolate with n=1/2~11, 6th order polynomial

Figure 12: n dependence of nth-order Rényi entropy with Nt = 1024 at � = 1.5. Solid

symbol at n = 1 denotes the entanglement entropy. All the results are extrapolated values

at Dcut ! 1.

4 Summary and outlook

We have calculated the entanglement and Rényi entropies for the (1+1)-dimensional O(3)

NLSM under the condition ⇠ ⌧ L using the tensor renormalization group method. The
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Figure 10: 1/Dcut dependence of S(2)
A (L = 128) with Nt = 1024 at � = 1.4, 1.5, 1.6 and

1.7. Solid lines denote linear extrapolation.
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c w/ entanglement entropy
c w/ Renyi entropy
c=2

Figure 11: n dependence of central charge c obtained from nth-ordr Rényi (open) and

entanglement (closed) entropies. Solid line denotes c = 2 to guide your eyes.

In the Monte Carlo approach it is di�cult to calculate the entanglement entropy.
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Figure 5: 1/Dcut dependence of SA(L = 128) with Nt = 1024 at � = 1.4, 1.5, 1.6 and 1.7.

Solid lines denote linear extrapolation.
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Figure 6: � dependence of entanglement and 2nd-order Rényi entropies at L = 128 with

Nt = 1024.
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β=1.5, L=128, Nt=1024 
Dcut→∞

terms of Nt so that Nt = 1024 is large enough to be regarded as the zero temperature limit.

In Fig. 4 we plot SA(L) with Nt = 1024 at � = 1.4, 1.5, 1.6 and 1.7. The entanglement

entropy shows plateau behavior once the interval L goes beyond the correlation length.

This is an expected behavior under the condition of ⇠ ⌧ L [27]. As ⇠ increases for larger �,

the plateau of SA(L) starts at larger L and its value is increased according to the theoretical

expectation of SA(L) ⇠ c
3 ln ⇠ [27]. In Fig. 5 we plot SA(L = 128) at � = 1.4, 1.5, 1.6 and

1.7 as a function of 1/Dcut. We observe an increasing trend of SA(L = 128) for vanishing

1/Dcut. The solid lines express the linear extrapolation of SA(L = 128) at 1/Dcut  0.02

to obtain the value at Dcut ! 1, which are listed in Table 1.

The mass gap m in the (1+1)d O(3) NLSM is expressed as [30]

m =
8

e
⇤MS = 64⇤L =

128⇡

a
� exp (�2⇡�) , (3.1)

where the two-loop expression for the beta function at � ! 1 is used in the last equation.

Since the correlation length is inversely proportional to the mass gap the entanglement

entropy is rewritten as

SA =
c

3
(2⇡� � ln�) + const. (3.2)

in terms of the coupling constant �. In Fig. 6 we plot the � dependence of SA at L = 128

with Nt = 1024. We determine the central charge c by fitting the data in the range of

1.4  �  1.7 with the function of Eq. (3.2), where the condition of ⇠ ⌧ L is well satisfied.

We obtain the value of c = 1.97(9), which is consistent with c = 2.04(14) obtained by the

MPS method in Ref. [31]. For an instructive purpose Fig. 7 shows an alternative plot of

SA(L = 128) with Nt = 1024 as a function of ln ⇠ measured in Ref. [29]. This is motivated

by a concern that the (1+1)d O(3) NLSM does not have a good asymptotic scaling property

below � ⇠ 2.0 [29, 32]. The use of the fit function SA = c
3 ln ⇠ + const. gives the central

charge c = 2.15(3), which is consistent with c = 1.97(9) obtained above.
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� exp (�2⇡�) , (3.1)

where the two-loop expression for the beta function at � ! 1 is used in the last equation.
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behavior of S(2)
A (L) is observed in the large Nt region so that Nt = 1024 is essentially

regarded as the zero temperature limit of S(2)
A (L). Figure 9 compares S(2)

A (L) at � = 1.4,

1.5, 1.6 and 1.7 with Nt = 1024 fixed. Our observation is consistent with the theoretical

expectation that S(2)
A (L) should stay constant in the range of L � ⇠ according to S(2)

A (L) ⇠
c
6(1 + 1/n) ln ⇠ [27]. In Fig. 10 we show Dcut dependence of S(2)

A (L = 128) at � = 1.4, 1.5,

1.6 and 1.7. The extrapolated value of S(2)
A (L = 128) at Dcut ! 1 is obtained by the

linear fit of the data in terms of 1/Dcut with 1/Dcut  0.02. The � dependence of S(2)
A

at L = 128 with Nt = 1024 is plotted in Fig. 6 together with SA. We extract the central

charge c from the data in 1.4  �  1.7 employing the following fit function with n = 2:

S(n)
A =

c

6

✓
1 +

1

n

◆
(2⇡� � ln�) + const. (3.3)

The value of c = 2.27(16) is slightly larger than that determined from SA.

We repeat the same calculation for other nth-order Rényi entropy. The n dependence

of the central charge c is plotted in Fig. 11. We observe that the value of c seems to

converge to c = 2 as n increases. Here we consider the error of the nth-order Rényi entropy

stemming from the errors of the eigenvalues in the density matrix. Suppose S̄(n)
A is the true

nth-order Rényi entropy and �̄j denotes the true jth eigenvalue in the density matrix ⇢A
normalized as TrA⇢A = 1:

S̄(n)
A =

1

1� n
lnTrA⇢

n
A =

1

1� n
ln
X

j

�̄n
j , (3.4)

where we assume the descending order for the eigenvalue �1 > �2 > �3, · · · . Introducing

the error of �j , which is expressed as �j , the measured Rényi entropy may be written as

S(n)
A =

1

1� n
ln
X

j

�
�̄j + �j

�n ' 1

1� n
ln
X

j

⇣
�̄n
j + n�j �̄

n�1
j

⌘
. (3.5)

Focusing on the error of the Rényi entropy we find

�S(n)
A =

1

1� n

1P
i(�̄

n
i )

n
X

j

�j �̄
n�1
j =

n

1� n

X

j

�j
�̄j

1
P

i

⇣
�̄i

�̄j

⌘n , (3.6)

|�S(n)
A | < n

|1� n|
X

j

|�j |
�̄j

1
P

i

⇣
�̄i

�̄j

⌘n <
n

|1� n|
X

j

|�j |
�̄j

✓
�̄j

�̄1

◆n

! |�1|
�̄1

(n ! 1). (3.7)

The error of the Rényi entropy is bounded by the relative error of the maximum eigenvalue

of the density matrix in the large n limit. This may explain the convergence behavior of

the central charge observed in Fig. 11.

– 9 –

mass gap(two loop):

von Neumann EE:

n-th Rényi EE:

central charge is determined from β dependence

c=1.97(9) (von Neumann EE)
consistent btw different methods
c=2.04(4) by Matrix Product State (MPS)
Bruckmann+, PRD99(2019)074501
c〜2 by finite size spectrum w/ TNR 
Ueda+, PRE106(2022)014104



(1+1)d lattice O(3) NLSM at 𝜇≠0

(𝜃, 𝜙) is discretized w/ Gauss-Legendre quadrature → TN representation
Symmetry btw spatial and temporal directions is broken by 𝜇
⇒ Spatial correlation length (𝜉) ≠ Temporal correlation length (𝜉()

𝜉( = 𝜉) with z dynamical critical exponent

Quantum phase transition at 𝜇 ≠ 0
Luo-YK, arXiv:2406.08865

This paper is organized as follows. In Sec. 2, we define the (1+1)d O(3) NLSM on the

lattice and give the tensor network representation. We present the numerical results for the

entanglement and Rényi entropies in Sec. 3. We determine the central charge and discuss

the consistency between the entanglement and Rényi entropies. Section 4 is devoted to

summary and outlook.

2 Formulation and numerical algorithm

Although the definition of the (1+1)d O(3) NLSM and its tensor network representation

are already given in the appendix of Ref. [28], we briefly give the relevant expressions for

this work to make this paper self-contained.

2.1 (1+1)-dimensional O(3) nonlinear sigma model

We consider the partition function of the O(3) NLSM on an isotropic hypercubic lattice

⇤1+1 = {(n1, n2) |n1 = 1, . . . , 2L, n2 = 1, . . . , Nt} whose volume is V = (2L) ⇥ Nt. The

lattice spacing a is set to a = 1 unless necessary. The O(3) matrix s(n) resides on the sites

n and satisfies the periodic boundary conditions s(n+ ⌫̂L) = s(n) (⌫ = 1, 2). The lattice

action S is defined as

S = ��
X

n2⇤1+1,⌫

s(n) · s(n+ ⌫̂). (2.1)

The partition function Z is given by

Z =

Z
D[s]e�S , (2.2)

where D[s] is the O(3) Haar measure, whose expression is given later.

2.2 Tensor network representation of the model

The O(3) matrix in the model can be expressed as

sT (⌦) = (cos ✓, sin ✓ cos�, sin ✓ sin�)

⌦ = (✓,�) , ✓ 2 (0,⇡], � 2 (0, 2⇡].
(2.3)

The partition function and its measure are written as

Z =

Z
D⌦

Y

n,⌫

e�si(⌦n)si(⌦n+⌫̂) , (2.4)

D⌦ =
VY

p=1

1

4⇡
sin(✓p)d✓pd�p . (2.5)

We discretize the integration (2.4) with the Gauss-Legendre quadrature [11, 20] after chang-

ing the integration variables:

�1  ↵ =
1

⇡
(2✓ � ⇡)  1, (2.6)

�1  � =
1

⇡
(�� ⇡)  1. (2.7)
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This paper is organized as follows. In Sec. 2, we define the action of the (1+1)d O(3)

NLSM at finite density on the lattice and give the tensor network representation. In Sec. 3

we present the numerical results for the properties of the phase transition at finite density.

Section 4 is devoted to summary and outlook.

2 Formulation and numerical algorithm
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{(n1, n2) |n1 = 1, . . . , L, n2 = 1, . . . , Nt} whose volume is V = L ⇥ Nt. The lattice spacing

a is set to a = 1 unless necessary. A real three-component unit vector s(n) resides on the

sites n and satisfies the periodic boundary conditions s(n + ⌫̂L) = s(n) (⌫ = 1, 2). The

lattice action S is defined as

S = ��
X

n2⇤1+1,⌫

3X

�,�=1

s�(⌦n)D��(µ, ⌫̂)s�(⌦n+⌫̂), (2.1)

where the spin s(⌦) and matrix D(µ, ⌫̂) are expressed as

s(⌦) =

0

B@
cos ✓

sin ✓ cos�

sin ✓ sin�

1

CA , (2.2)

D(µ, ⌫̂) =

0

B@
1

cosh(�2,⌫µ) �i sinh(�2,⌫µ)

i sinh(�2,⌫µ) cosh(�2,⌫µ)

1

CA (2.3)

with

⌦ = (✓,�) , ✓ 2 (0, ⇡], � 2 (0, 2⇡]. (2.4)

Note that we introduce the chemical potential to the rotation between the second and third

components.

The partition function and its measure are written as

Z =

Z
D⌦

Y

n,⌫

e�
P3

�,�=1 s�(⌦n)D��(µ,⌫̂)s�(⌦n+⌫̂), (2.5)

D⌦ =
VY

p=1

1

4⇡
sin(✓p)d✓pd�p . (2.6)

We discretize the integration (2.5) with the Gauss-Legendre quadrature [24, 29] after chang-

ing the integration variables:

�1  ↵ =
1

⇡
(2✓ � ⇡)  1, (2.7)

�1  � =
1

⇡
(� � ⇡)  1. (2.8)
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Figure 1: Density matrix on a 4⇥ 4 lattice. Periodic boundary condition is taken in the

spatial direction.

3 Numerical results

We calculate the partition function Z at the fixed value of � = 1.4 using the HOTRG

algorithm with the bond dimension Dcut = 125, 130 and 135. The free energy density is

obtained by

f = � 1

LNt
lnZ.

The parameter space of the three-component unit vector is discretized with K = 100,

which gives much smaller uncertainties than Dcut. We evaluate the number density with

the numerical di↵erentiation of f :

hni = @

@µ
f ⇡ �1

LNt

lnZ(µ +�µ)� lnZ(µ ��µ)

2�µ
.

In order to discuss the phase transition we introduce � ⌘ |µ � µc| to measure the

distance from the transition point µc. The correlation length in the space direction, which

is denoted by ⇠, should diverge as ��⌫ with the critical exponent ⌫ at the criticality of

the second order phase transition. If the system has the symmetry between the spatial

and temporal directions, the spatial correlation length should be the same as the temporal

one ⇠t. The current model defined in Eq. (2.1), however, breaks the symmetry due to the

introduction of the chemical potential so that ⇠t should be deviated from ⇠. The relation

between two correlation lengths are given by ⇠t ⇠ ⇠z ⇠ ��z⌫ with z the dynamical critical

exponent.

Figure 2 shows the µ dependence of the number density hni in the vicinity of the

transition point at � = 1.4 on a V = L ⇥ Nt = 225 ⇥ 225 = 33554432 ⇥ 33554432 lattice
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number density:

with Dcut 2 [125, 135]. The temperature and spatial extension normalized by the mass gap

are given by T/m = 2.1⇥ 10�7 and Lm = 4.9⇥ 106, which is large enough to be regarded

as the thermodynamic limit at zero temperature. We observe the Silver Blaze phenomenon

in Fig. 2: the vanishing number density hni up to µ ⇡ 0.1455 and sudden increase of hni
beyond µc. Although the results with Dcut = 125, 130 and 135 are almost degenerate,

we find slight Dcut dependence. We apply the global fit to the data at Dcut 2 [125, 135]

employing the function of hni(µ, Dcut) = An · {µ � (µc + Bn/Dcut)}⌫ with An, µc, Bn and

⌫ the fit parameters. The fit range is chosen to be 0.14575  µ  0.14700. The solid

curves show the fit results with An = 0.20(2), µc = 0.14512(11), Bn = 0.068(14) and

⌫ = 0.512(15) at Dcut = 125, 130 and 135. Note that the value of µc is consistent with the

mass gap m = 1/⇠0 = 1/6.90(1) = 0.1449(2) at µ = 0 obtained by a high precision Monte

Carlo result with a collective algorithm [31].

The temporal correlation length ⇠t is calculated from the largest and second largest

eigenvalues �0 and �1, respectively, of the density matrix as already explained at the end

of Sec. 2. Figure 3 plots ln(⇠t) as a function of the number of the coarse-graining steps at

� = 1.4 with Dcut = 135. The temporal correlation length shows plateau behavior once the

spatial lattice size becomes larger than ⇠ at the su�ciently low temperature. The plateau

values increases as µ approaches the critical value of µc = 0.14512. We make a fit of the

temporal correlation length, which is measured with the density matrix of 16-th coarse-

graining step, and employ the fit form of ln ⇠t(µ, Dcut) = A⇠+↵ ln |µ�(µc+B⇠/Dcut)| with
µc = 0.14512. The fit parameters A⇠, B⇠ and ↵ are determined to be A⇠ = �0.030(29),

B⇠ = 0.0599(9) and ↵ = 1.003(5). In Fig. 4 we plot ln ⇠t(µ, Dcut) as a function of ln |µ �
(µc + B⇠/Dcut)| with Dcut 2 [125, 135]. The solid curve represents the fit result with the

choice of Dcut = 1, which shows fairly linear behavior. Using the relation of ↵ = z⌫ with

⌫ = 0.512(15) we obtain the dynamical critical exponent z = 1.96(1).

The critical exponents ⌫ and z were previously studied using the dual lattice simu-

lation [15]. Although the values of ⌫ and z were not directly determined, the authors

observed that the assumption of ⌫ = 0.5 and z = 2 reasonably explains the results for

the scaling properties of the spin sti↵ness. Our results of ⌫ = 0.512(15) and z = 1.96(1)

confirm their observation.
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Simultaneous fit with

⇒ 𝜈 = 0.512 15 , 𝜇* = 0.14512(11)

𝜇* is consistent with mass gap m=0.1449(2) at  𝜇 = 0
Wolff,
NPB334(1990)581
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𝜉( is obtained from the eigenvalues of density matrix 

ex. density matrix on 4×4 lattice

Eigenvalues are calculated on reduced single tensor obtained by HOTRG

We obtain

Z =
X

{⌦1},··· ,{⌦V }

 
VY

n=1

⇡

8
sin(✓(↵an))wanwbn

!
Y

⌫

M⌦n,⌦n+⌫̂ (2.9)

with ⌦n = (✓(↵an), �(�bn)) ⌘ (an, bn), where ↵an and �bn are a- and b-th roots of the K-th

Legendre polynomial PK(s) on the site n, respectively.
P

{⌦n} denotes
PK

an=1

PK
bn=1. M

is a 4-legs tensor defined by

Man,bn,an+⌫̂ ,bn+⌫̂
= exp

8
<

:�
3X

�,�=1

s�(an, bn)D��(µ, ⌫̂)s�(an+⌫̂ , bn+⌫̂)

9
=

; . (2.10)

The weight factor w of the Gauss-Legendre quadrature is defined as

wan =
2(1� ↵an

2)

K2P 2
K�1(↵an)

, wbn =
2(1� �bn

2)

K2P 2
K�1(�bn)

. (2.11)

After performing the singular value decomposition (SVD) on M :

Man,bn,an+⌫̂ ,bn+⌫̂
'

DcutX

in=1

Uan,bn,in(⌫)�in(⌫)V
†
in,an+⌫̂ ,bn+⌫̂

(⌫), (2.12)

where U and V denotes unitary matrices and � is a diagonal matrix with the singular

values of M in the descending order. We can obtain the tensor network representation of

the O(3) NLSM on the site n 2 ⇤1+1

Txn,x0
n,yn,y

0
n
=

⇡

8

q
�xn(1)�x0

n
(1)�yn(2)�y0n(2)

X

an,bn

wanwbn

⇥ V †
xn,an,bn

(1)Uan,bn,x0
n
(1)V †

yn,an,bn
(2)Uan,bn,y0n(2), (2.13)

where the bond dimension of tensor T is given by Dcut, which controls the numerical

precision in the TRG method. The tensor network representation of partition function is

given by

Z '
X

x0x0
0y0y

0
0···

Y

n2⇤1+1

Txnx0
nyny

0
n
= Tr [T · · ·T ] . (2.14)

In order to evaluate Z we employ the higher order tensor renormalization group (HOTRG)

algorithm [2].

The density matrix is defined by ⇢ = Trx[T · · ·T ], where Trx denotes the trace in terms

of the spatial direction of the legs of tensors. Figure 1 illustrates the density matrix in the

case of a 4⇥ 4 lattice. The temporal correlation length is obtained by

⇠t =
Nt

ln
⇣
�0
�1

⌘ , (2.15)

where �0 and �1 is the largest and the second largest eigenvalues of the density matrix

⇢yy0 = TrxT ⇤
xxyy0 with T ⇤ the reduced single tensor obtained by HOTRG.
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𝜆+ and 𝜆'are the largest and second largest eigenvalues 
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Temporal Correlation Length (2) 
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𝜉( as a function of coarse-graining steps near 𝜇*

Plateau behaviors are observed for 𝐿 > 𝜉 at sufficiently low temperature
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Temporal Correlation Length (3) 
Luo-YK, arXiv:2406.08865

β=1.4, Dcut=135, K=100
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Simultaneous fit with

⇒ 𝛼 = 𝑧𝜈 = 1.003 5 , 𝑧 = 1.96(6)

The first successful calculation of dynamical critical exponent with TRG 

𝜇 dependence of 𝜉( near 𝜇*

with Dcut 2 [125, 135]. The temperature and spatial extension normalized by the mass gap

are given by T/m = 2.1⇥ 10�7 and Lm = 4.9⇥ 106, which is large enough to be regarded

as the thermodynamic limit at zero temperature. We observe the Silver Blaze phenomenon

in Fig. 2: the vanishing number density hni up to µ ⇡ 0.1455 and sudden increase of hni
beyond µc. Although the results with Dcut = 125, 130 and 135 are almost degenerate,

we find slight Dcut dependence. We apply the global fit to the data at Dcut 2 [125, 135]

employing the function of hni(µ, Dcut) = An · {µ � (µc + Bn/Dcut)}⌫ with An, µc, Bn and

⌫ the fit parameters. The fit range is chosen to be 0.14575  µ  0.14700. The solid

curves show the fit results with An = 0.20(2), µc = 0.14512(11), Bn = 0.068(14) and

⌫ = 0.512(15) at Dcut = 125, 130 and 135. Note that the value of µc is consistent with the

mass gap m = 1/⇠0 = 1/6.90(1) = 0.1449(2) at µ = 0 obtained by a high precision Monte

Carlo result with a collective algorithm [31].

The temporal correlation length ⇠t is calculated from the largest and second largest

eigenvalues �0 and �1, respectively, of the density matrix as already explained at the end

of Sec. 2. Figure 3 plots ln(⇠t) as a function of the number of the coarse-graining steps at

� = 1.4 with Dcut = 135. The temporal correlation length shows plateau behavior once the

spatial lattice size becomes larger than ⇠ at the su�ciently low temperature. The plateau

values increases as µ approaches the critical value of µc = 0.14512. We make a fit of the

temporal correlation length, which is measured with the density matrix of 16-th coarse-

graining step, and employ the fit form of ln ⇠t(µ, Dcut) = A⇠+↵ ln |µ�(µc+B⇠/Dcut)| with
µc = 0.14512. The fit parameters A⇠, B⇠ and ↵ are determined to be A⇠ = �0.030(29),

B⇠ = 0.0599(9) and ↵ = 1.003(5). In Fig. 4 we plot ln ⇠t(µ, Dcut) as a function of ln |µ �
(µc + B⇠/Dcut)| with Dcut 2 [125, 135]. The solid curve represents the fit result with the

choice of Dcut = 1, which shows fairly linear behavior. Using the relation of ↵ = z⌫ with

⌫ = 0.512(15) we obtain the dynamical critical exponent z = 1.96(1).

The critical exponents ⌫ and z were previously studied using the dual lattice simu-

lation [15]. Although the values of ⌫ and z were not directly determined, the authors

observed that the assumption of ⌫ = 0.5 and z = 2 reasonably explains the results for

the scaling properties of the spin sti↵ness. Our results of ⌫ = 0.512(15) and z = 1.96(1)

confirm their observation.
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Summary and Outlook

Current status：Calculations of 4d theories (scalar，fermion，gauge) are possible
⇒ Extension to Abelian (U(1)) and non-Abelian groups (SU(2), SU(3))

Non-perturbative study of Entanglement Entropy

Advantages of TRG
・ Free from sign problem/complex action problem in MC method

・ Computational cost for LD system size ∝ D×log(L)
・ Direct manipulation of Grassmann numbers
・ Direct evaluation of partition function Z itself

Applications in particle physics：
Finite density QCD, QFTs w/ θ-term, Lattice SUSY etc.

Also, in condensed matter physics
Hubbard model (Mott transition, High Tc superconductivity) etc.

Z =
∫
Dφ exp(−SRe[φ] + iSIm[φ])
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⎠
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