宇宙背景ニュートリノ崩壊光探索のための サブミリサイズ石英基板集光器の開発

柏木 隆城 宇宙史研究センター2024年度第1回構成員会議 成果報告会 2024/7/2

CosmicBackgroundNeutrinoDecay実験

COBAND実験における光学系

- ▶回折格子で波長ごとに分光 →Nb/AI STJに入射
- ▶回折限界による焦点面での光の広がりを十分 に含むために、受光素子の受光面積は直径 **400µm**を必要とする。

▶ 集光器で40 µ m角のSTJに集光する。 →サブミリサイズ集光器の設計を行った

衣 3: 果 元 品 へ の 人 射 再 度 万 巾											
角度[°]	0	1	2	3	4	5	6	7	8	9	10
割合 [%]	0.00	2.12	3.78	5.66	7.46	9.30	11.1	12.8	14.6	16.1	16.8

主。 佐川四, の1 山上 広八七

光学シミュレーション(Code-V)上で集光器に厚みを合わせたモデルを設計

円錐形集光器に条件を合わせたモデル

円錐形集光器の2D描画

光線の集光器に対しての入射角度は1°になっている

集光器に入射した光線のうち射出口から出てきた光線の割合(光線通過割合)を求める →作製したサンプルと比較

集光器のサンプル

超短パルスレーザーを用いて、

- ウィンストンコーン
- 円錐
- 角錐
- (+円柱・角柱)

形の集光器を各2つ作製(Al製(50mm×50mm×1.6mm厚)) **可視光レーザーでの光線通過割合を測定。**

円錐形集光器のサンプル

角錐形集光器のサンプル

可視光(465nm)を用いた集光効率の測定

平行光 (波長465nm)を集光器に入射

→PMTで測定。

- ・角錐光量/角柱光量 円錐・ウィンストンコーン光量/円柱光量
- より光線通過割合を求める。

<u>→満足のいく光線通過割合は得られなかった</u>

可視光実験におり	け	る	配置
----------	---	---	----

集光器種	最大光線通過割合
ウィンストンコーン(1)	1.10%
ウィンストンコーン(2)	0.90%
円錐(1)	5.20%
円錐(2)	3.90%
角錐(1)	7.00%
角錐(2)	2.70%

SiO2製集光器の作製

▶AI製集光器を試作したが、思った ような精度ではなかった

- ▶高精度に作製できるSiO2製円錐 形集光器サンプルを試作
- ▶表面にAIを蒸着(100nm)

▶性能評価を行う

AI蒸着後の集光器のサンプル(円錐)

AI蒸着前の集光器のサンプル(円錐)

集光器性能評価のセットアップ

- ・円錐光量/円柱光量より光線通過割合を求める
- ・集光器への入射角度ごとにX,Z軸スキャン
- ・シミュレーションと比較

実際のセットアップ

可視光(399nm)を用いたSiO2集光器の光線通過割合の測定 平行光(波長399nm)を集光器に入射し、PMTで測定 →中心から外れた角度で透過光(offset)が見える(後述)

AI膜厚ごとの反射率

各波長での光線通過割合から集光器壁面のAI膜厚を求めたい

FILMETRICSによる薄膜反射率シミュレーション

近赤外光(1.5µm)を用いたSiO2集光器の光線通過割合の測定

可視光と同様の測定を近赤外光で行う PbSe検出器でチョッピングビームを測定

SiO2石英円錐の入射角依存性(1.5μm)

遠赤外光(9.6µm)を用いたSiO2集光器の光線通過割合の測定

これまでと同様の測定を遠赤外光で行う 中部大学の遠赤外ビーム(波長9.6µm)を用いて測定 →通過光線の検出ができた

遠赤外光(57.2μm)を用いたSiO2集光器の光線通過割合の測定

波長9.6μmと同様の測定を波長57μm光で行う 中部大学のビームを用いて測定

→通過光線は検出されなかった

→集光器

壁面の蒸着が薄く、反射されなかった?

各波長での集光器光線通過割合

399nm:63% 1.5µm:46% 9.6µm19% 57.2µm:検出できず

57.2µm光が見えない理由 →蒸着Alの膜厚が不足?

FILMETRICSによる薄膜反射率シミュレーション

AI膜厚ごとの反射率(2~80μm)

214

裏面蒸着後のSiO2集光器の光線通過割合の測定(399nm)

▶透過光の影響を抑えるため集光器裏面を蒸着

▶可視光での透過光(offset)が抑えられた

裏面蒸着後のSiO2集光器の光線通過割合の測定(1.5μm)

これまでの結果を加味すると集光器壁面のAI膜2~10nm厚?

波長1.5µmビームを用いた光線通過割合入射角依存性(裏面蒸着)

裏面蒸着後のSiO2集光器の光線通過割合の測定(850nm)

▶850nmビームを使用して測定(MPPC検出器を使用)

▶現在詳細を測定中

まとめ

▶COBAND実験では遠赤外波長50µm域で宇宙背景ニュートリノ崩壊光 検出を行うが、検出器のサイズ(40µm)に合わせた集光器の設計が必要。

▶SiO2製集光器サンプルを試作

→399nm,1.5µm,9.6µm,57.2µmで評価を試みた

→57.2µmでは信号を検出できなかったが、9.6µm波長では20%の光 線通過割合を得た

→実験で使用できる範囲内

→透過光の影響を排除するため、集光器基板裏面をAI蒸着

→399nm,1.5µmで評価

→反射光の影響のみの性能評価ができた

▶誤差の評価のため、各波長ごとの入射角依存性の統計量を増やす

▶光線通過割合の増加のため、集光器のAI蒸着の膜厚を今の10倍程度に 増やす

▶ 膜厚を増した集光器で遠赤外光での測定を目指す