LHCでのBSMヒッグス物理

佐藤構二 宇宙史研究センター構成員会議 2024年7月2日

BSM Higgs Search Motivation

- Many BSM theories predict additional Higgs Bosons.
- BSM can enhance rare decay modes of H(125) boson.
- Two Higgs Doublet Model (2HDM, e.g. MSSM)
 - 5 Higgs Bosons

$$h, H, A, H^+, H^-$$

- Widely used as a benchmark for BSM Higgs searches.
- 2HDM+Singlet (e.g. NMSSM)
 - 7 Higgs Bosons
 - 5 of 2HDM, with 2 additional neutral bosons (1 CP-even and 1 CP-odd)

 $h_1, h_2, h_3, H^+, H^-, a_1, a_2$

- Many other models are searched for at LHC.
- I will present a small subset of newest and moderately new results among many BSM Higgs results from ATLAS and CMS.

Large Hadron Collider (LHC)

Particle physics experiment at the highest energy p - p collisions at $E_{CM} \leq 14$ TeV Broad physics program at ATLAS and CMS, including, BSM Higgs Searches.

ATLAS

CERN Prevessin

LHC 27 km²

CMS

LHC Circumferrence 27km

3

ALICE

LHC Long Term Schedule

• Each Exp. Collected $\sim 100 \text{ fb}^{-1}$ in Run 3.

Higgs Boson Discovery

- Many analyses still working on Run 2 dataset.
- Analysis groups starting to work on Run 3 data.

	year	<i>E_{CM}</i> (TeV)	integ lumi [fb ⁻¹]
Run 1	2011	7	5
	2012	8	21
Run 2	2015-2018	13	139
Run 3	2022-2025	13.6	250
HL-LHC	2029-2038	14	3000

Searches in 2HDM/MSSM Regime

- 2HDM and MSSM are widely used as a theoretical benchmark for BSM Higgs searches.
- 5 Higgs bosons

 h, H, A, H^+, H^-

Higgs Discovery in 2012

- ATLAS and CMS reported discovery of Higgs boson on July 4, 2012.
- Englert and Higgs won the Nobel prize in 2013.

H(125) Measurements

- Both collaborations have measured H(125) properties. •
- Results are consistent with SM.

 μ_{n}

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

1.29+0.22

6.05+2.66

Parameter value

±0.20 +0.09 -0.14

4.0 4.5

0.5 1.0

0.94+0.20 ±0.15 +0.13 -0.12

Stat Syst

0.85+0.10 +0.05 +0.05

1.05^{+0.22} -0.15 ±0.15 ±0.16

+0.42 +0.17 -0.38 -0.16

+0.97

1.21+0.45

2.59+1.07

3.0 3.5

7

2.0

Parameter value

These results can be used to constrain BSM Higgs scenarios.

Ratio to SM

0.8

bb

ww ττ ZZ 27

Decay mode

Ratio to SM

0.5

ggF+bbH VBF

WH

ZH

Production process

ttH

tH

Interpretation of H(125) Measurements **FATLAS**

Production and decay rates of *H*(125) are interpreted in 2HDM and MSSM scenarios.

MSSM Higgs Status

- Current status of hMSSM.
- Some more full Run2 results to be released.

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES /ATL-PHYS-PUB-2024-008/

https://twiki.cern.ch/twiki/bin/view/CMSPublic/SummaryResultsH IG#NEW_Summary_of_MSSM_Higgs_Boson

Low mass $H \rightarrow \gamma \gamma$

ATLAS-CONF-2023-035

- Many theories can give rise to additional low mass Higgs bosons.
- CMS observes an excess around 95.4 GeV with local (global) significance of 2.9σ (1.3σ).
- ATLAS local significance of 1.7σ at 95.4 GeV.

 $\mathsf{BSM}\; H/A \to t\bar{t}$

• Promising search for heavy H/A in 2HDM (e.g. MSSM) at low tan β .

• Consider the intereference with SM $t\bar{t}$ background.

arXiv:2404.18986

A/H

g DDDDDD

g 000

g COOCOCC

$\mathsf{BSM}\; H/A \to t \,\overline{t} \; \text{(cont'd)}$

- Analyzed 1 and 2 lepton final states.
- Data were consistent with SM background.
- Most significant deviation was at 800 GeV with a local significance of 2.3 σ .

$A \to ZH \to \ell \ell t \bar{t}$

- Region with 400 GeV $< m_H \ll m_A$ is unexplored.
- This region is favored by some electroweak baryogenesis scenarios.
- Analyze events with $\ell^+\ell^- + nj(1, \ge 2b)$
- Elliptical bins $(\Delta m, p_z)$ define final discriminant
- No significant deviation from SM background. Expected ($\Delta m, p_z$) distribution for signal for $m_A = 1000$ GeV, $m_H = 600$ GeV of $m_A = 1000$ GeV, $m_H = 600$ GeV

Data distribution for signal hypothesis of $m_A = 1000$ GeV, $m_H = 850$ GeV

CMS-PAS-B2G-23-006

Involves two BSM Higgs bosons

 $A \rightarrow ZH \rightarrow \ell \ell t \bar{t}$ (cont'd)

Exclusion limits for Type II 2HDM are set at low $\tan \beta$ values.

ATLAS has a comparable results for $A \rightarrow ZH \rightarrow \ell \ell t \bar{t}$, $vvt \bar{t}$ JHEP 02 (2024) 197 14

 $H \rightarrow h_{125}h_{125} \rightarrow bb\tau\tau$

<u>JHEP 07 (2023) 040</u>

- $\tau_{had}\tau_{had}$ (single and double $\tau_{had-vis}$ triggers), $\tau_{lep}\tau_{had}$ (single lepton and lepton+ $\tau_{had-vis}$ triggers). Require two *b*-jets.
- PNN trained with inputs including $m_{hh}, m_{\tau\tau}, m_{bb}$

Largest deviation at 1 TeV with local (global) significance of 3.1σ (2.0 σ).

$H \rightarrow h_{125} h_{125}$

Largest 1.1 TeV, with a local (global) significance of 3.3σ (2.1 σ).

https://twiki.cern.ch/twiki/bin/view/CMSP ublic/SummaryResultsHIG

JHEP 05 (2024) 316

$X \to HH/HY \to bb\gamma\gamma$

- MSSM motivated search.
- *X*: heavy spin-0 particle.
 - Spin-2 was also searched for.
- *Y*: spin-0 particle. Can be another H(125).
- BDT was trained to divide signal regions.

Involves two BSM Higgs bosons. Interpretation with NMSSM.

Searches in 2HDM+Singlet/NMSSM

– 7 Higgs Bosons

 $h_1, h_2, h_3, H^+, H^-, a_1, a_2$

 $VH, H \rightarrow aa \rightarrow bb \ bb$

arXiv:2403.10341

- $a \rightarrow b\overline{b}$ is usually the dominant decay mode above $b\overline{b}$ threshold.
- $Z \to \ell \ell$ and $W \to \ell \nu$ channels.
- 3 or 4 b-tagged jets.
- BDT discriminants trained for *ZH* and *WH* channels for signal separation.

$H \rightarrow aa$ Search Summary Plots

https://twiki.cern.ch/twiki/bin/view/CMSPublic /Summary2HDMSRun2

ATL-PHYS-PUB-2021-008

ATLAS Preliminary March 2021 Run 1: 15 = 8 TeV Run 2: 15 = 13 TeV 2HDM+S Type-IV, $tan\beta = 5$ --- expected ± 1 σ observed Run 1 20.3 fb⁻¹ H→ aa→ µµττ PRD 92 (2015) 052002 Run 1 20.3 fb⁻¹ H→ aa→ yyyy EPJC 76 (2016) 210 Run 2 36.1 fb¹ $H \rightarrow aa \rightarrow \mu\mu\mu\mu$ JHEP 06 (2018) 166 Run 2 36.1 fb⁻¹ H→ aa→ bbbb JHEP 10 (2018) 031 Run 2 36.1 fb⁻¹ H→ aa→ bbbb PRD 102 (2020) 112006 Run 2 36.7 fb⁻¹ H→ aa→ yygg PLB 782 (2018) 750 Run 2 139 fb⁻¹ H→ aa→ bbuu

ATLAS-CONF-2021-009

 $H \rightarrow Za, a \rightarrow \gamma \gamma$

- $H \rightarrow Za$ decay is unexplored.
- $H \rightarrow Za$ decay is also motivated by axion models.
- Analysis split into resolved and merged categories based on angular separation of γ 's.
- Main backgrounds from Z + jets (π^0 decays) and $Z + \gamma$.
 - Composition is 25:75 in merged, 90:10 in resolved.

CMS has a comparable results in this search: Phys. Lett. B 852 (2024) 138582.

Phys. Lett. B 848 (2024) 138536

Summary

- LHC is under Run3 operation in 2022-2025.
 - ATLAS/CMS recorded ~100 fb⁻¹ of 13.6 TeV p p collision data in Run 3.
 - Plan to have 250 fb^{-1} at end of 2025.
 - Collaborations ramping up Run 3 analyses.
- Full Run 2 data ($\sim 140 \text{ fb}^{-1}$ at 13 TeV) analysis are going on.
 - Some more full Run2 results to be released for 2HDM, MSSM scenarios.
 - Complicated signatures and heavier masses are searched for.
 - Advanced theoretical scenarios are explored.
- Run 3 dataset will enable searches and measurements at higher precision.

Backup

ATLAS and CMS at LHC

- Multi-purpose detectors observing p p collisions at World Highest Energy of $\sqrt{s} \le 14 \text{ TeV}$
 - Standard Model phenomena: Higgs bosons, top quarks, Electroweak, *B* Physics, …
 - Searches for BSM physics: BSM Higgs, Supersymmetry, …

Luminosity Delivered in Run 3

Searches for rare H(125) decays

Rare Decays $H(125) \rightarrow \gamma + Meson$ Search Motivation

- SM predicts very small branching fractions.
- $H \to \gamma(q\bar{q})$ occur through direct Yukawa coupling and through $H \to \gamma\gamma^* \to \gamma(q\bar{q})$.

– Yukawa coupling to 1st and 2nd generation is unknown.

- BSM processes can enhance the branching fractions.
- Processes like $H \rightarrow K^* \gamma$ can be sensitive to flavor violating Yukawa couplings.

Phys. Lett. B 847 (2023) 138292

Rare Decays $H(125) \rightarrow \gamma \omega / \gamma K^*$

- Trigger on γ + tracks. Utilize modified version of τ trigger for γK^* .
- Meson reconstructions:
 - $ω → π^+π^-π^0$: 279 < $m(π^+π^-π^0)$ < 648 MeV. $π^0$ reconstructed as Calorimeter cluster.
 - $K^* \rightarrow K^+ \pi^-$: 790 < $m(\pi^+ \pi^- \pi^0)$ < 990 MeV.

Rare Decays $H(125) \rightarrow \gamma \rho, \gamma \phi, \gamma K^{*0}$

Mesons are reconstructed as a track pair.

CMS-PAS-HIG-23-005

SATLAS Rare Decays $H(125) \rightarrow \gamma + Meson$

ATL-PHYS-PUB-2023-004

- Massive DM can couple to Higgs boson.
- Some theories predict that *H* can act as a portal between DM and SM sector.
- Both ATLAS and CMS searched for invisible Higgs decays in different production modes.

$H(125) \rightarrow invisible$

Phys. Lett. B 842 (2023) 137963

Eur. Phys. J. C 83 (2023) 933

32

DM plots

2.3 Objection on EFT, first UV model

arXiv:2107.01252 [hep-ph]

Phys. Lett. B 842 (2023) 137963

In the EFT approach used in LHC Run–1 [23], the mass of the VDM was entered arbitrarly, which leads to a non-renormalisable Lagrangian and violation of unitarity [25]. For this reason, it is safer to consider a better framework, i.e. a simple UV completion with a dark Higgs sector that gives mass to the vector DM via spontaneous electroweak symmetry breaking (EWSB). The simplest renormalisable Lagrangian for the Higgs portal VDM in such a UV model is given by Ref.[25]:

$$\mathcal{L}_{VDM} = -\frac{1}{4} V_{\mu\nu} V^{\mu\nu} + D_{\mu} \Phi^{\dagger} D^{\mu} \Phi - \lambda_{\Phi} (\Phi^{\dagger} \Phi - \frac{\nu_{\Phi}^2}{2})^2 - \lambda_{\Phi H} (\Phi^{\dagger} \Phi - \frac{\nu_{\Phi}^2}{2}) (H^{\dagger} H - \frac{\nu_{H}^2}{2}), \tag{6}$$

where Φ is the dark Higgs field which generates a nonzero mass for the VDM through spontaneous U(1)' breaking; $D_{\mu}\Phi = (\partial_u + ig_X Q_{\Phi}V_{\mu})\Phi$ and g_X is the coupling constant.

From the Lagrangian, one can derive the invisible branching fraction of the Higgs decay [25]:

$$\Gamma_{\rm inv}^{\rm H} = \frac{g_X^2}{32\pi} \frac{m_H^3}{m_V^2} (1 - 4\frac{m_V^2}{m_H^2} + 12\frac{m_V^4}{m_H^4}) (1 - 4\frac{m_V^2}{m_H^2})^{1/2},\tag{7}$$

Download : Download high-res image (288KB) Download : Download full-size image

Fig. 4. Upper limit at the 90% CL on the spin-independent WIMP-nucleon scattering cross-section as a function of the <u>WIMP</u> mass for direct detection experiments and the interpretation of the $H \rightarrow$ invisible combination result in the context of Higgs portal models considering scalar, Majorana and vector WIMP hypotheses. For the vector case, results from <u>UV-complete</u> models are shown (pink curves) for two representative values for the mass of the predicted Dark Higgs particle (m_2) and a mixing angle α =0.2. The uncertainties from the nuclear form factor are smaller than the line thickness. Direct detection results are taken from Refs. [65], [66], [67], [68]. The neutrino floor for coherent elastic neutrino-nucleus scattering (dotted gray line) is taken from Refs. [69], [70], which assume that germanium is the target over the whole WIMP mass range. The regions above the limit contours are excluded in the range shown in the plot.

$H \rightarrow h_{125} h_{125}$

- Analyses in ATLAS combination <u>Phys. Rev. Lett. 132</u> (2024) 231801
 - *bbγγ* resolved only <u>Phys. Rev. D 106 (2022) 052001</u>
 - $bb\tau\tau$ resolved only JHEP 07 (2023) 040
 - bbbb Phys. Rev. D 105 (2022) 092002

$X \to YH$

- Atlas
 - $-X \rightarrow SH \rightarrow bb\gamma\gamma 2404.12915$
 - $X \rightarrow SH \rightarrow leptons + \gamma \gamma 2405.20926$
- CMS
 - $X \rightarrow YH \rightarrow bbbb$ Phys. Lett. B 842 (2023) 137392
 - $X \rightarrow YH \rightarrow bb\tau\tau \ JHEP \ 11 \ (2021) \ 057$
 - $X \rightarrow YH \rightarrow bb\gamma\gamma \ JHEP \ 05 \ (2024) \ 316$

ATLAS 2HDM+S Searches

- Full Run2 2HDM+S results from ATLAS:
- $H \rightarrow aa \rightarrow 4\gamma$ <u>2312.03306</u>
- $H \rightarrow aa \rightarrow bb\mu\mu$ Phys. Rev. D 105 (2022) 012006
- $t\bar{t}a, a \to \mu\mu$ Phys. Rev. D 108 (2023) 092007
- $H \rightarrow Za, a \rightarrow \gamma \gamma$ Phys. Lett. B 848 (2024) 138536
- $H \rightarrow Za, a \rightarrow hadrons$ Phys. Rev. Lett. 125 (2020) 221802