

Precision mass measurements of short-lived nuclei at heavy ions storage ring CSRe in Lanzhou

Yu-Hu Zhang (张玉虎)

Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China

Institute of Modern Physics, CAS

Layout of experimental terminals at HIRFL-CSR in IMP

IMP

- **2.** $\boldsymbol{\textit{B}}\rho\text{-defined}$ isochronous mass spectrometry IMS
- 3. New masses from $B\rho$ -IMS and its impacts on nuclear structure & nuclear astrophysics
- 4. Summary & perspective

1. Introduction:

Importance of mass measurements

Importance of mass measurements

1. Introduction:

Advanced mass spectromery

Cooled Fragments

IMS in CSRe-Lanzhou

1. Introduction

IMS in CSRe-Lanzhou

IMS in CSRe-Lanzhou

Principle of mass determinations with **B**ρ-IMS

P. M. Walker, et al., ILIMA Technical Proposal, GSI, 2005. H. Geissel and Yu. A. Litvinov, J. Phys. G: Nucl. Part. 31, S1779 (2005)

	Calibration	Outputs
Measurements	$(\boldsymbol{B}\boldsymbol{\rho})_{i} = \left(\frac{\boldsymbol{m}}{\boldsymbol{q}}\right)_{i} \cdot (\boldsymbol{\gamma}\boldsymbol{\nu})_{i}$ $\boldsymbol{C}_{i} = \boldsymbol{\nu}_{i} \cdot \boldsymbol{T}_{i}$	$\left(\frac{m}{q}\right)_{i} = \frac{(B\rho)_{i}}{(\gamma\nu)_{i}}$
T_{i}, v_{i} (<i>i</i> = 1, 2, <i>N</i>)	$ \begin{array}{c} B\rho(C) \\ using nuclei with \\ known m/q \end{array} $	New $(m/q)_i$ using $(\boldsymbol{B}\rho)_{fit}^i$

m/q (u/e)

Mass resolving powers are significantly improved after field drift correction for all nuclides in the large m/q-range of $\Delta(m/q) \approx 0.10 ue^{-1}$

Re-determined masses of $T_z = -1$ nuclei

Comparison with MR-TOF-MS@RIKEN

21

Advantages of $B\rho$ -defined IMS

- 1) Fast measurement: $t_{exp} \approx 0.1 ms$
- 2) High sensitivity: *a single ion*, $\sigma_m \approx (3 \sim 5) \times q$ (keV)
- 3) High efficiency: *tens of ions in a single run*
- 4) High precision: on par with PTMS for short-lived nuclei
- 5) Zero background: *background-free measurements*

PHYSICAL REVIEW C 106, L051301 (2022)

Letter

Bρ-defined isochronous mass spectrometry: An approach for high-precision mass measurements of short-lived nuclei

M. Wang^O,^{1,2,*} M. Zhang,^{1,2} X. Zhou,^{1,2} Y. H. Zhang^O,^{1,2,†} Yu. A. Litvinov,^{1,3,‡} H. S. Xu,^{1,2} R. J. Chen,^{1,3} H. Y. Deng,^{1,2}
 C. Y. Fu,¹ W. W. Ge,¹ H. F. Li,^{1,2} T. Liao,^{1,2} S. A. Litvinov,^{1,3} P. Shuai,¹ J. Y. Shi,^{1,2} M. Si,^{1,2} R. S. Sidhu,³ Y. N. Song,^{1,2}
 M. Z. Sun,¹ S. Suzuki,¹ Q. Wang,^{1,2} Y. M. Xing,¹ X. Xu,¹ T. Yamaguchi,⁴ X. L. Yan,¹ J. C. Yang,^{1,2} Y. J. Yuan,^{1,2}
 Q. Zeng,⁵ and X. H. Zhou^{1,2}

Eur. Phys. J. A (2023) 59:27 https://doi.org/10.1140/epja/s10050-023-00928-6 THE EUROPEAN PHYSICAL JOURNAL A

Regular Article - Experimental Physics

Bρ-defined isochronous mass spectrometry and mass measurements of ⁵⁸Ni fragments

M. Zhang^{1,2}, X. Zhou^{1,2}, M. Wang^{1,2,a}, Y. H. Zhang^{1,2,b}, Yu. A. Litvinov^{1,3,c}, H. S. Xu^{1,2}, R. J. Chen^{1,3}, H. Y. Deng^{1,2}, C. Y. Fu¹, W. W. Ge¹, H. F. Li^{1,2}, T. Liao^{1,2}, S. A. Litvinov^{3,1}, P. Shuai¹, J. Y. Shi^{1,2}, R. S. Sidhu³, Y. N. Song^{1,2}, M. Z. Sun¹, S. Suzuki¹, Q. Wang^{1,2}, Y. M. Xing¹, X. Xu¹, T. Yamaguchi⁴, X. L. Yan¹, J. C. Yang^{1,2}, Y. J. Yuan^{1,2}, Q. Zeng⁵, X. H. Zhou^{1,2}

3. New masses from **B**p-IMS and it impacts on NS & NucA

3. New masses from $B_{ m P}$ **-IMS** and it impacts on NS & NucA-

3. New masses from *B* ρ **-IMS** and it impacts on NS & NucA-

 $\frac{^{36}\text{Ar beam}}{\left[1 \sum_{i=1}^{n} (\bar{M}_{exp} - M_{ame})\right]_{i}^{2}}$

$$\chi_{n} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \frac{(M_{exp} - M_{ame})_{i}}{(\sigma_{stat}^{2} + \sigma_{fit}^{2} + \sigma_{ame}^{2})_{i}}}$$

 $\chi_{\rm n}=0.69\pm0.22$

Black: reference nuclei used in calibration Blue: re-determined masses for checking the reliability of our measurement Red: New masses

IMP

3. New masses from *B*p-IMS and it impacts on NS & NucA

Nuclear Astrophysics

 Waiting point ⁶⁴Ge PRL 106, 112501 (2011) ApJ 818, 78 (2016) Nature Physics, Vol. 19, 1091-1097 (2023)

 Ca-Sc cycle ApJLett. 766, L8 (2013) PRC 98 (2018) 014319

- ⁴²Ti(*p*, γ)⁴³V reaction rate PRC 89, 035802 (2014)
- Zr-Nb cycle and ⁸⁴Sr abundance PLB 781, 358 (2018)

One mass \rightarrow several issues

Nuclear structure

• IAS and IMME

PRL 109, 102501 (2012) PRL 117, 182503 (2016) PRC 98, 014319 (2018) PRC 102, 054311 (2020) PRC 108, 034301 (2023) EPJ A 59 (2023)

- Isospin non-conserving force PLB 735, 327 (2014)
- Magic number and tensor force CPC 39, 104001 (2015) PRC 99, 064303 (2019) PRC 100, 051303(R) (2019)
- CVC test

PLB 767, 20 (2017)

- sd-shell nucler radius PRC 98, 014319 (2018)
- np residual interaction & 3NF PRL 130, 192501 (2023)

... ...

Waiting point ⁶⁴Ge in the rp-process of Type I X-ray bursts

All Q-values of (p, γ) reaction around ⁶⁴Ge obtained

New light curve enables us to set new constraints on the optimal d and (1 + z) parameters

- the neutron star in GS1826-24 is 6.5% farther away (0.4 kpc=1300 ly) from us !
- reduced 1+z value indicates weaker gravitation than believed !

mass and radius are constrained

nature physics

9

Article

https://doi.org/10.1038/s41567-023-02034-2

Mass measurements show slowdown of rapid proton capture process at waiting-point nucleus ⁶⁴Ge

Received: 14 June 2022	X. Zhou ^{1,2} , M. Wang ^{1,2} , Y. H. Zhang ^{1,2} , Yu. A. Litvinov ^{1,3} , Z. Meisel ⁴ , K. Blaum ⁵ , X. H. Zhou ^{1,2} , S. Q. Hou ^{1,2,6} , K. A. Li ¹ , H. S. Xu ^{1,2} , R. J. Chen ^{1,3} , H. Y. Deng ^{1,2} , C. Y. Eu ¹ , W. W. Ge ¹ , L. He ⁷ , W. J. Huang ^{1,8} , H. Y. Jiao ^{1,2} , H. F. Li ^{1,2}	
Accepted: 24 March 2023		
Published online: 01 May 2023	J. G. Li ¹ , T. Liao ^{1,2} , S. A. Litvinov ^{1,3} , M. L. Liu ¹ , Y. F. Niu $\mathbf{\Theta}^9$, P. Shuai ¹ , J. Y. Shi ^{1,2} ,	
Check for updates	 Y. N. Song^{1,2}, M. Z. Sun¹, Q. Wang^{1,2}, Y. M. Xing¹, X. Xu¹, F. R. Xu¹, X. L. Yan¹, J. C. Yang^{1,2}, Y. Yu^{1,2}, Q. Yuan¹⁰, Y. J. Yuan¹⁰, Q. Zeng¹¹, M. Zhang^{1,2} & S. Zhang¹⁰ 	

Density distribution

New indicator of proton-halo structures from mirror energy differences (MEDs)

Submitted to Physical Review Letters

Nuclear structure of dripline nuclei elucidated through precision mass measurements of $^{23}\mathrm{Si},~^{26}\mathrm{P},~^{27,28}\mathrm{S},$ and $^{31}\mathrm{Ar}$

Y. Yu,^{1,2,*} Y. M. Xing,^{1,2,*} Y. H. Zhang,^{1,2,†} M. Wang,^{1,2,†} X. H. Zhou,^{1,2} J. G. Li,^{1,2} H. H. Li,^{1,2} Q. Yuan,¹ Y. F. Niu,³ Y. N. Huang,³ J. Geng,³ J. Y. Guo,⁴ J. W. Chen,⁵ J. C. Pei,⁵ F. R. Xu,⁵ Yu. A. Litvinov,^{6,§} K. Blaum,⁷ G. de Angelis,^{8,1} I. Tanihata,^{9,10} T. Yamaguchi,¹¹ X. Zhou,^{1,2} H. S. Xu,^{1,2} Z. Y. Chen,^{1,2} R. J. Chen,^{1,6} H. Y. Deng,^{1,2} C. Y. Fu,¹ W. W. Ge,¹ W. J. Huang,^{12,1} H. Y. Jiao,^{1,2} Y. F. Luo,^{1,2} H. F. Li,¹ T. Liao,^{1,2} J. Y. Shi,^{1,2} M. Si,¹ M. Z. Sun,¹ P. Shuai,¹ X. L. Tu,¹ Q. Wang,¹ X. Xu,¹ X. L. Yan,¹ Y. J. Yuan,^{1,2} and M. Zhang¹ ¹CAS Key Laboratory of High Precision Nuclear Spectroscopy, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China ²School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China ³School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China ⁴School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China ⁵State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China ⁶GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany ⁷Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany ⁸INFN Laboratori Nazionali di Legnaro, viale dell'Università 2 Legnaro, Italy ⁹School of Physics, Beihang University, Beijing 100191, China ¹⁰Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki Osaka 567-0047, Japan ¹¹Department of Physics, Saitama University, Saitama 338-8570, Japan ¹²Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516007, China (Dated: September 14, 2024)

- 1. *B*ρ-defined IMS has been established in CSRe which shows several advantages in mass measurement of short-lived nuclei.
- 2. Masses of ⁷⁸Kr, ⁵⁸Ni, ³⁶Ar fragments have been measured, enabling to address several issues in nuclear structure and nuclear astrophysics.
- 3. *B*ρ-defined IMS will be installed in the SRing of HIAF facility and the masses of heavy and n-rich exotic nuclei will be addressed in future.
- 4. We need close collaborations both in experiment and in theory

CSRe mass measurement collaboration

Plan to be commissioned at the end of 2026

High-Intensity Heavy Ion Accelerator Facility-HIAF

HIAF is one of the major national science and technology infrastructure under construction with the support of both central and local governments

The project is proposed and constructed by IMP, CAS The total budget is 3.0 billion CNY The construction of project started at the end 2018, and the period is 7 years

Courtesy of Jiancheng Yang

