The Physical Properties of Interstellar Medium in a Galaxy at z=6.81revealed by JWST and ALMA spectroscopy

Date: December 16, 2024 Presenter: **Mitsutaka Usui (宇宙観測研究室, M2)**

Collaborators: T. Hashimoto, W. Osone, A. K. Inoue, K. Mawatari, Y. Sugahara, Y. W. Ren, Y. Nakazato, N. Yoshida, Y. Fudamoto, M. Hagimeto, Y. Tamura, T. Hashigaya, H. Matsuo, T. J. L. C. Bakx, J. Álvalez-Márquez, A. Crespo Gómez, L. Colina, S. Arribas, M. Pereira-Santaella, L. Costantin, R. Marques-Chaves, D. Ceverino and C. Blanco-Prieto

Galaxy Evolution and Formation in the Early Universe

Star Formation and Chemical Evolution

Line Emission

Electron temperature Estimation

How do we estimate ISM physical properties?

Electron density Estimation

How do we estimate ISM physical properties?

Empirical Estimation

Difficult to estimate theoretically or lack of necessary information → Empirical estimation using emission line ratios

宇宙史研究センター成果報告会

Spectroscopic Observation

To measure the line intensity \rightarrow Spectroscopic observation

ALMA Observations for High-z Galaxies

- ightarrow Suggests that z~0 and z>6 have different ISM conditions
- Iower metallicity or higher ionization parameter?

ALMA Observations for High-z Galaxies

Iower metallicity or higher ionization parameter?

Observations for Optical Lines in High-z Galaxies by JWST

Rionization and the ISM/Stellar Origins with JWST and ALMA (RIOJA; JWST GO1 #1840)

PI & coPI: J. Álvalez-Márquez & T. Hashimoto

Observation time : 33.9 hrs

Target: 12 ALMA [OIII] 88 um emitters @ z = 6 ~ 8

D Motivations:

Hashimoto+18

Comprehensive understanding of stars, gas, and

dust in galaxies @z > 6

□ Instruments

- NIRCam Imaging (1 ~ 5 um)
- ♦ NIRSpec IFS (3 ~ 5 um)

□ Analysis of NIRSpec and ALMA data for COS-2987

宇宙史研究センター成果報告会

Target: COS-2987

□ A star-forming galaxy @ z=6.81

(780 million years after the Big Bang)

□ Spitzer/IRAC + HST → Lyman break galaxy (Smit+15)

□ VLT/XSHOOTER → Lyα (Laporte+17)

ALMA observations

- ◆ [CII] 158 um (Smit+18, Posses+22)
- ◆ [OIII] 88 um (Witstok+22) → [OIII]/[CII]~6
- ◆ Dust continuum → non-detection
 (Smit+18, Witstok+22)

This work : Examine the ISM properties using JWST and ALMA

宇宙史研究センター成果報告会

NIRSpec/IFS and ALMA data

NIRSpec/IFS data

Cycle1 GO #1840

(RIOJA: PIs; J. Alvarez-Marquez, T. Hashimoto)

- □ Grating/Filter : *G*395*H*/*F*290*LP*
 - ightarrow $R\sim 2700$, $\lambda\sim$ 2.87 5.27 um
- Extract the spectrum from 2σ region of the
 [OIII]5008 integrated intensity map
- **D**etection criteria : $SNR \ge 3$

(c.f., Laseter+24, Morishita+24)

ALMA archival data

- □ Band 8 data (reported in Witstok+22)
- □ We re-analyzed the [OIII] 88 um flux
 - → Consistent with Witstok+22

Spatially-integrated properties from NIRSpec/IFS

$$A_V = 0.20^{+0.21}_{-0.20} \text{ mag}$$

Consistent with non-detection of ALMA dust continuum (Smit+18, Witstok+22)

Spatially-integrated properties from NIRSpec/IFS

Spatially-integrated properties from NIRSpec/IFS

Electron density

- ◆ [OII]3730/3727
- $n_e = 480^{+630}_{-270} \,\mathrm{cm}^{-3}$
- Gas-phase metallicity
 - Direct- T_e method
 - ♦ [OIII]5008/4364 → $T_e = (2.1 \pm 0.4) \times 10^4$ K
 - $12 + \log_{10}(0/H) = 7.7 \pm 0.2 (\sim 0.1 Z_{\odot})$

JWST + ALMA analysis - [OIII] line ratio diagnostics

[OIII] energy diagram

 \square Three [OIII] lines allow us to constrain T_e and n_e

- [OIII]5008/4364 \rightarrow sensitive to T_e
- [OIII]88/5008 \rightarrow sensitive to T_e and n_e

JWST + ALMA analysis - [OIII] line ratio diagnostics

\square Three [OIII] lines allow us to constrain T_e and n_e

- [OIII]5008/4364 \rightarrow sensitive to T_e
- [OIII]88/5008 \rightarrow sensitive to T_e and n_e

JWST + ALMA analysis - [OIII] line ratio diagnostics

 \blacksquare Three [OIII] lines allow us to constrain T_e and n_e

- [OIII]5008/4364 \rightarrow sensitive to T_e
- [OIII]88/5008 \rightarrow sensitive to T_e and n_e

□ The [OIII] ratios of COS-2987 cannot be explained by homogeneous ionized gas with a constant T_e and n_e .

- □ Inconsistent with n_e derived from [OII] ($n_e = 480^{+630}_{-270}$ cm⁻³)
- Causes of this situation

→ we consider "Two-phase ionized gas"

Discussion – A toy model with two-phase ionized gas

[OIII] 5008 and 88 have

- ◆ different critical densities
- different temperature sensitivities

⇒ Assuming **"two-phase ionized gas"**

Discussion – A toy model with two-phase ionized gas

 \square A luminosity (L_{line}) can be written as follow;

$$L_{\text{line}} = L_{\text{line},1} + L_{\text{line},2}$$

= $\epsilon_{\text{line},1} \times V_1 + \epsilon_{\text{line},2} \times V_2$

 ϵ : emissivity [erg s⁻¹ cm⁻³]

V: volume [cm³]

$$\epsilon_{\text{line,i}}$$
 : As a function of ($T_{e,i}, n_{e,i}, n_{O^{2+}} = 10^{-4}$)
line: [OIII]5008 or 88

■ We examine whether the observed line ratio can be reproduced under assumptions of n_e , T_e , and $n_{O^{2+}}$ for each ionized gas.

Discussion – A toy model with two-phase ionized gas

□ For example;

- Higher-Te, -ne ionized gas (T_e = 20,000 K, n_e = 600 cm⁻³)
- Lower-Te, -ne ionized gas (T_e = 10,000 K, n_e = 100 cm⁻³)
- \Rightarrow We can reproduce the [OIII]88/5008 ratio

when V_{hot} : $V_{cold} = 1:1000$

D To better constrain the situation in the future;

• Deeper JWST observations and Higher-resolution ALMA observations

- ◆ UV lines (e.g., OIII]1666, CIII]1907,09)

 \rightarrow estimating T_e and n_e for the higher-ionization region

Important implications for ISM studies using JWST+ALMA

Summary

- □ JWST measurements are consistent with other high-z galaxie.
- **The** [OIII]88/5008 ratio of COS-2987 cannot be explained by homogeneous ionized gas with a constant T_e and n_e .
- □ We reproduced the [OIII]5008 and 88 fluxes assuming a two-phase ionized gas
- □ Important implications for ISM studies using JWST+ALMA