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FSS of Lee-Yang Zeros	  ratios of LYZs (LYZRs) similar to the Binder cumulant

                                  	  a new general tool to determine CPs

⇒
⇒

• tests in spin systems	  LYZR is as powerful as the Binder cumlant

                              	  LYZR superior in suppressing various corrections

• application to heavy-quark QCD (status report)

⇒
⇒
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CP

This report:

?



3d-Ising

t

h

= T − Tc

Tc

CP at T = Tc = 4.51152321(4)

1st order PT

M ≡ ∑
i

σi

⟨M⟩ > 0

[Ferrenberg+, Phys.Rev. E97 (2018)]

Binder-cumulant method


lattices up to 10243

3

ferromagnetic

Z = ∑
{σi}

exp − 1
T

−∑
⟨i,j⟩

σiσj−h∑
i

σi = e−F/T

σi = ± 1

⟨M⟩ < 0

L

⟨M2(t,0,L)⟩c

T
Tc

L → ∞

small L



Finite-size scaling

4

Near the CP & at large ,  .L F(t, h, L) ≈ Fsing(t, h, L) = F̃(Lytt, Lyhh)

scaling function

L
⟨Mn(t, h, L)⟩c ≡ − Tn−1 ∂nF(t, h, L)

∂hn ≈ − L−nyhF̃(n)(Lytt, Lyhh), F̃(n) ≡ Tn−1∂nF̃/∂hn

⇒ ⟨Mn(t,0,L)⟩c ≈ − L−nyhF̃(n)(Lytt,0)

cumulants

⇒ Tpeak(L) − Tc ∝ L−yt

⇒ ⟨M2⟩peak
c ∝ L2yh

yt = 1.58737472(29), yh = 2.481851192(24) for 3d Ising

⟨M2(t,0,L)⟩c

T
Tc

L → ∞

small L

Tpeak(L)



rnm

Rnm(t,L)

0

2n�1
2m�1

1

t

L!1

B4(t, L)

b4

3

1
t

small L

large L

Binder cumulant
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b4 = 1.60356(15)

B4(t, L) ≡ ⟨M4(t,0,L)⟩c

⟨M2(t,0,L)⟩2c
+ 3 = b4 + c4 Lyt t + O(t2) ⟶L→∞ {3 (t > 0)

1 (t < 0)

3d-Ising

    at  can be determined

 directly on finite lattices with . 

⇒ Tc L → ∞
L < ∞

  Tc = 4.51152321(4)

Ferrenberg+, Phys.Rev.E97 (2018),  lattices up to 10243

Tc



Lee-Yang Zero
3d-Ising

t

h

6

On finite lattices,   and regular for real 
Z > 0 t, h

Z = ∑
{σi}

e− 1
T (−∑⟨i,j⟩ σiσj − h∑i σi)

L



Lee-Yang Zero
3d-Ising

t

hR

hI

h ⟶ hR + ihI
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LYZ:  zero of  for complex Z(t, h, L) h

On finite lattices,   and regular for real 

but can have  for complex .

Z > 0 t, h
Z = 0 t, h

Z = ∑
{σi}

e− 1
T (−∑⟨i,j⟩ σiσj − h∑i σi)

L



Lee-Yang Zero
3d-Ising

8

t

hR

hI

LYZ

Known to distribute on the imaginary  axis.

  [Yang-Lee (1952)]

h

On finite lattices,   and regular for real 

but can have  for complex .

Z > 0 t, h
Z = 0 t, h

L

Z = ∑
{σi}

e− 1
T (−∑⟨i,j⟩ σiσj − h∑i σi)

h ⟶ hR + ihI

LYZ:  zero of  for complex Z(t, h, L) h



Lee-Yang Zero
3d-Ising

9

t

hR

hI
As  ,  the distribution becomes denser.


    pinches the real axis 

indicating the 1st order transition at 


    make a couple of lines 

leaving a gap around the real axis

L → ∞
t < 0 ⇒

L = ∞
t > 0 ⇒

h (n)
LY(t, L) →L→∞ {

hLYES(t) ≠ 0 (t > 0)
a(t) 2n − 1

L3 ⟶ 0 (t < 0)

th LYZ from the real axis:n

L



Hadron Gas
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Lee-Yang Edge Singularity
3d-Ising

t

hR

hI
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Lee-Yang Edge Singularity

200

400

600

800 Re µLYE [MeV] HotQCD [4,4]
BiPar Multi

80 90 100 110 120 130 140 150 160 170
0

100

200

300

400

T [MeV]

Im µLYE [MeV] HotQCD [4,4]
BiPar Multi

[Clarke+, arXiv:2405.10196 (2024)]

      HISQ, , , imag. 

     

NF = 2 + 1 Nt = 6 Ns = 36 μB
TCEP = 105+8

−18MeV, μCEP
B = 422+80

−35MeV

  from the scaling relation in the  limit

                                                                              [Stephanov (2006)] 

Application to QCD assuming  at finite 

hLYES ∝ tyh/yt L → ∞

h (1)
LY ≈ hLYES L

[Basar, PRC 110, 074511 (2024)]

     HotQCD Taylor coeff's,  HISQ, 

     

NF = 2 + 1 Nt = 8 − 12
TCEP ≈ 100 MeV, μCEP

B ≈ 580 MeV

[Adam+, arXiv:2502.03211 (2025)]

     Wuppertal-Budapest Taylor coeff's, , , 

     

NF = 2 + 1 Nt = 8 Ns = 16
TCEP < 103 MeV, or no CEP



Lee-Yang Zero
3d-Ising
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To get 

 need to study the -dep. 

Tc
⇒ L

Wolf cluster algorithm + reweighting




3 -values around 

each  meas. every 10 MC steps

L = 16, ⋯ 192, 256
T TC

2 × 106
Tc

LY

larger L

[Wada-Kitazawa-KK, arXiv:2508.20422 → JPSJ]

n = 1 n = 2 Lee-Yang Zero
3d-Ising

6

t

hR

hI

LYZ

Known to distribute on the imaginary  axis.

                                    [Yang-Lee, Phys.Rev. 82 (1952)]

No LYZs on the real axis.

h

h ⇒ hR + ihI

On finite lattices,  and regular for real 

but can be  for complex .

Z > 0 t, h
Z = 0 t, h

LYZ:  zero of  for complex  for .Z(t, h, L) h L < −

L

n = 1
n = 2



Finite-size scaling of LYZs
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Near the CP,          


                                                                                      LYZ:        

             [Itzykson (1983)]

F(t, h, L) ≈ Fsing(t, h, L) = F̃(Lytt, Lyhh) ⇒ Z ∼ Zsing(t, h, L) = Z̃(Lytt, Lyhh)

⇒ Lyh h (n)
LY(t, L) = h̃(n)

LY(Lytt)

3d-Ising LYZs

LY

n = 1

n = 2

[Wada-Kitazawa-KK, arXiv:2508.20422 → JPSJ]

LY

n = 1 n = 2

scaling functions



Lee-Yang Zero Ratio
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h (n)
LY(t, L) ⟶L→∞ {

hLYES(t) (t > 0)
a(t) 2n − 1

L3 ⟶ 0 (t < 0)

Rnm(t, L) ≡ Im h(n)
LY(t, L)

Im h(m)
LY (t, L)

= rnm + cnm Lyt t + O(t2)

rnm

Rnm(t, L)

0

2n� 1
2m� 1

1

t

L ! 1

[Wada-Kitazawa-KK, PRL 134, 162302 (2025)]

Lyhh (n)
LY(t, L) = h̃(n)

LY(Lytt) = Xn + Yn Lyt t + O(t2)

⟶L→∞ {
1 (t > 0)
2n − 1
2m − 1 (t < 0)

Tc

small L

large L



Binder cumulant
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B4(t, L) ≡ ⟨M4(t,0,L)⟩c

⟨M2(t,0,L)⟩2c
+ 3 = b4 + c4 Lyt t + O(t2) ⟶L→∞ {3 (t > 0)

1 (t < 0)

LYZR provides us with

    a new convenient & independent tool  

            to determine CP 
by intersection analyses á la Binder-cumulant.

rnm

Rnm(t,L)

0

2n�1
2m�1

1

t

L!1

B4(t, L)

b4

3

1
t

small L

large L



T
4.51145 4.511475 4.5115 4.511525 4.51155

2.39

2.41

2.43

2.45

2.47 R21(T,L)

T
4.51145 4.511475 4.5115 4.511525 4.51155

3.64

3.67

3.7

3.73

3.76

3.79 R31(T,L)

T
4.51145 4.511475 4.5115 4.511525 4.51155

4.79

4.83

4.87

4.91

4.95

4.99

5.03 R41(T,L)

T
4.51145 4.511475 4.5115 4.511525 4.51155

1.56

1.58

1.6

1.62

B4(T,L)

L = 16 L = 24
L = 32 L = 48
L = 64 L = 96
L = 128 L = 192
L = 256

Lmin, 𝜒2/d.o.f.16 5.0624 1.6832 1.2648 1.2164 1.4096 1.52128 1.65192 2.48

L = 16 L = 24
L = 32 L = 48
L = 64 L = 96
L = 128 L = 192
L = 256

Lmin, 𝜒2/d.o.f.16 5.9724 3.7832 2.6148 2.4864 2.7896 2.70128 1.79192 1.06
L = 16 L = 24
L = 32 L = 48
L = 64 L = 96
L = 128 L = 192
L = 256

Lmin, 𝜒2/d.o.f.16 4.6324 2.5832 2.6048 1.9664 2.4396 2.22128 1.62192 5.2 × 10 − 5

L = 16
L = 24
L = 32
L = 48
L = 64
L = 96
L = 128
L = 192
L = 256

Lmin, 𝜒2/d.o.f.16 32.0724 8.8632 3.3348 1.4364 1.5196 1.46128 1.01192 1.41

Lee-Yang Zero Ratio
3d-Ising
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[Wada-Kitazawa-KK, arXiv:2508.20422 → JPSJ]

LYZR consistent with known 
 and  

LYZR is as powerful as  

LYZR works with smaller 's 
than 

Tc yt

B4
L

B4

Tc y_t
4.5115185(59) 1.5874(115)
4.5115211(52) 1.5691(86)

4.5115232(1) 1.58723(22)Ferrenberg+ 

(2018)

R21
B4

Our results [
B4



(Tc, rnm)

CRnm
L
ytδT

2

 by linear approx. of Tc Rnm

Sub-leading contribution in FSS
3d-Ising

16

[Wada-Kitazawa-KK, arXiv:2508.20422 → JPSJ]

LYZR has smaller sub-leading than .B4

FSS fits:          with 5 fitting param's     [similar for  too.] 

      The next-to-linear term not negligible in our fits, 

      while large non-linearity not desirable.

Normalized curvature as a measure of the non-linearity:

Rn1(T, L) = rn1 + cn1Lyt t+dn1L2yt t2, t = T−Tc

Tc
B4

Cf ≡ L−yt
∂2f/∂T2

∂f/∂T
T=TC

, f = Rnm(T, L) or B4(T, L)

   = error in  obtained by linear approx. of  's at  .  ⇒ Cf LytδT2 Tc f T = Tc ± δT

J. Phys. Soc. Jpn. FULL PAPERS

(Tc, rnm)

CRnmLytδT 2

Fig. 5. Schematic picture of a geometric interpretation of Eq. (35). The red band indicates the deviation of

Tc from the true value caused by the linear approximation in Eq. (36), which is proportional to CRnm
ωT 2.

Table III. Normalized curvatures C f for the LYZR Rnm(T, L) and the Binder cumulant B4(T, L).

f R21 R31 R41 B4

C f 0.0093(17) 0.0053(17) -0.0010(34) 0.0364(37)

their ratios, such as CR21/CB4 , in the L → ↑ limit are invariant under the non-linear variable

transformations of T and h, as discussed in Appendix B. In this sense, they can be used for

measures to compare the magnitude of non-linearity in different methods.

In Table III, we show the values of C f obtained by the non-linear fits with Lmin = 128

and ∆T = 5 ↓ 10↔5. One finds that the value of CB4 is about four times larger than CR21 ,

meaning the larger non-linearity in the Binder-cumulant method. In the LYZR method, CRn1

for larger n is smaller for n = 2, 3, 4. In particular, CR41 vanishes within statistics. These

results, possibly arising from accidental cancellations of the non-linear terms in the LYZs,

suggest that the LYZR method is advantageous in suppressing the non-linear effects in the

intersection analysis. In particular, R41(T, L) greatly suppresses its effect, while it has larger

statistical errors than R21(T, L) and R31(T, L) as we have seen in Sec. 4.1. In this way, different

combinations of n and m have different characteristics in the LYZR method. The flexibility in

choosing the combination of (n,m) depending on the purpose of numerical simulations may

be an advantage of the LYZR method.

5. Single LYZ and single cumulant methods

We now test the single LYZ and single cumulant methods introduced in Sec. 2.6. In

Fig. 6, we show the rescaled LYZs, L
yhh

(n)
LY(T, L) for n = 1, 2, and rescaled cumulants,

↗M
n(T, 0, L)↘c/Lnyh for n = 2, 4, as functions of T , where we use the value of yh in Eq. (8).
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Fit with FSS-correction due to dominant irrelevant op.

 

  [El-Showk+. (2014)] 

  

R21(Tc, L) = r21 (1 + cL−ω1)
ω1 = 0.8303(18)

⇒ r21 = 2.4158(37)(5)

Corrections to FSS
3d-Ising      and  at   [Ferrenberg+ (2018)]Rnm B4 Tc = 4.51152321(4)

17

[Wada-Kitazawa-KK, arXiv:2508.20422 → JPSJ]

1/L
0 1256 1128 164 132 1161.575

1.580
1.585
1.590
1.595
1.600
1.605
1.610 b4 1/L

0 1256 1128 164 132 1162.410

2.415

2.420

2.425

2.430

2.435 r21

IntersectionExtrapolation
L = ∞Eq. (26)

T = Tc (Eq. (2))
T = Tc (Intersection)

IntersectionExtrapolation
L = ∞T = Tc (Eq.(2))

T = Tc (Intersection)

LYZR has smaller corrections 
than .B4

b4 = 1.60356(15)[Ferrenberg+ (2018)]

r21

b4

FSS fit using    L = 128-256 ⇒ r21 = 2.4195(26)
b4 = 1.59892(224)

consistent !

Fit with FSS-correction      ⇒ b4 = 1.6023(32)(8)
consistent !

 

discrepant !
2σ

[



General systems in the same universality class
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[Wada-Kitazawa-KK, PRL 134, 162302 (2025)]

(

t
h

)

= A

(

δτ
δξ

)

=

(

a11 a12
a21 a22

)(

τ − τc
ξ − ξc

)

Lyhh (n)
LY(t, L) = h̃(n)

LY(Lytt) = Xn + Yn Lyt t + O(t2)

Map    by linear approx. around the CP:(t, h) ∼ (τ, ξ)

LYZ for real  & complex τ ξ
{

ξ
(n)
R = ξc −

a21

a22
δτ +O

(

L2ȳ
)

ξ
(n)
I =

Xn

a22
L−yh +

detA Yn

a2

22

δτLȳ +O
(

L2ȳ
)

ȳ ≡ yt − yh ≈ − 0.89 < 0

ℛnm(τ, L) ≡ ξ(n)
I (τ, L)

ξ(m)
I (τ, L)

= (rnm + Cnm Lyt δτ + O(δτ2)) (1 + Dnm L2ȳ + O(L4ȳ))
 is universalrnm

correction due to the mixing

Cnm = cnm det A/ a22, Dnm = − (Y2
n − Y2

m) a2
12/a2

22

H = τ "energy" + ξ "magnetization"



General systems
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ȳ ≡ yt − yh ≈ − 0.89 < 0

ℛnm(τ, L) = (rnm + Cnm Lyt δτ + O(δτ2)) (1 + Dnm L2ȳ + O(L4ȳ))
correction due to the mixing

ℬ4(t, L) = (b4 + c4 Lyt t + O(t2)) (1 + d4 Lȳ + O(L2ȳ))

LYZR has faster suppression of the mixing-correction than .B4

LYZR vs. Binder

Ising FSS  +  mapping


⇒

(

t
h

)

= A

(

δτ
δξ

)

=

(

a11 a12
a21 a22

)(

τ − τc
ξ − ξc

)

for the Ising universality

[Wada-Kitazawa-KK, PRL 134, 162302 (2025)]



τ_c
R_21 0.549375(18)
B_4 [our] 0.549382(11)
B_4 [Karsch (2000)] 0.54938(2)

Lee-Yang Zero Ratio
3d-Potts
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[Wada-Kitazawa-KK, PRL 134, 162302 (2025)]

even-odd HB + reweighting




3  values around 

each  meas. every 10 HB steps

L = 24,30,40,50,60,70
ξ ξc

106Z = ∑
{σi}

exp −τ∑
⟨i,j⟩

δσi,σj
− ξ∑

i
δσi,1

σi = 1,2,3

τ τ

consistent with Binder 
LYZR as powerful as B4

similar to Ising



QCD in heavy-quark region
Hopping-parameter expansion to NLO
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*

CP

Accuracy of NLO-HPE confirmed up to .             [Wakabayashi+, PTEP (2022] 
Effective method developed to incorporate higher orders.   [Ashikawa+, PRD 110 (2024)]

κc(Nt = 6)

Large lattices & high stat. enabled. 
 precision studies of Binder-cumulant 

 LYZs up to 4th order available
⇒
⇒

NLO incorporated exactly 
by reweighting

 simulated by PHB+OR à la quenched QCDλΩR

LO incorporated in the 
configuration generation]

β* = β + 48Nf κ4, λ(κ) = 48Nf Ntκ4 and 128Nf Ntκ6 for Nt = 4 and 6

]
SG+LO = − 6NtN3

s β* ̂P − N3
s λ Ω̂R

[Kiyohara+, PRD 104 (2021)]

Polyakov loop

LYZ Ratio Method for HQ-CP
Zeros on the complex-𝝀 plane

Partition-function ratio by reweighting
Contour plot of 

LYZ are nicely obtained 
up to the 4th one.

[Ejiri, PRD 73, 054502 (2006)]



Lee-Yang Zero Ratio
hqQCD
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[Wada-Kitazawa-KK, PoS (LATTICE 2024) 167; on-going]
HPE NLO,  PHB-OR + reweighting


,  

each  meas. every 5 PHB-OR steps
Nt = 4,[6] LT = Ns/Nt = 6,⋯,12 [⋯,18]

(5 to 10) × 105

SG+LO = − 6NtN3
s β* ̂P − N3

s λ Ω̂R

Ns Ns

NsNsNt = 4



cf.)       by the Binder cumulant method.
β*c = 5.68560(20)

5.68579(26)

Nt = 6

β*

consistent with Binder

preliminary



Universality of r21
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Ising Potts Nt = 4 Nt = 62.36

2.38

2.40

2.42

2.44 r21

hqQCD

-L = 40 70
LT ≤ 12 LT ≤ 18

Taking uncertainties due to differences 
in simulations/analyses into account,

preliminary

~consistent with Z2 universality (?)
more studies in hq-QCD needed.



Summary
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LYZR gives CP consistent with known results. 
LYZR is as powerful as Binder-cumulant. 
New universal constants  determined.rnm

Test study of LYZR in  3d-Ising, 3d-Potts, and heavy-quark QCD (on-going)

Lee-Yang Zero Ratio:  a new & independent tool to study CP

  intersection analyses à la Binder-cumulant.⇒

LYZR vs. Binder

smaller sub-leading contrib. in FSS     LYZR works with smaller 's 
smaller FSS-corrections 
faster suppression of the mixing-corrections in general systems.

⇒ L]
LYZR has

Application to heavy-quark QCD in progress.


