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Search for the critical point in spin systems and heavy-
quark-QCD using the Lee-Yang Zero Ratio method
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Critical Points

Important landmark in investigating thermodynamic properties
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This report: FSS of Lee-Yang Zeros = ratios of LYZs (LYZRs) similar to the Binder cumulant
= a new general tool to determine CPs

* tests in spin systems = LYZR is as powerful as the Binder cumlant
= LYZR superior in suppressing various corrections

- application to heavy-quark QCD (status report)
2



T_T /= Z exp —% — Z aiaj—h; o, o—FIT

Z' — ¢ {Gi} L(jJ)
TC ferromagnetic

? CP at T = TC —4.5] 152321(4) [Ferrenberg+, Phys.Rev. E97 (2018)]

{ Binder-cumulant method

lattices up to 10247

(M*(1,0,L)).

small L

1st order PT



scaling function

Finite-size scaling /
Near the CP & atlarge L, F(t,h,L) ~ Fsing(t, h,L) = F(Lt, L#h).
y, = 1.58737472(29), y, = 2.481851192(24) ftor 3d Ising

cumulants

0"F(t, h, L
<Mn(t, h, L))C = _ pn-1l (t,h, L)

oh"
= (M"(t,0,L)). ~ — L™F"(L¢,0)

~ — L7 (L, Lvh), FU = T 10"F/oh"

(M(L0.L), = Toall) =T, « L7

L. — o0
= <M2>lgeak x L2

small L



Binder cumulant

3d-Ising
_(M*z0.L), , 3 (t>0)
Pl S (M2(1,0,L))2 PTG 00D { 1 (t<0)
B,(t,L)

= 1_at L — oo can be determined

3 ,
r/ directly on finite lattices with L < co.

b
) Ferrenberg+, Phys.Rev.E97 (2018), lattices up to 1024°
small L

T.=4.51152321(4)

large L 1
b, = 1.60356(15)



Lee-Yang Zero
3d-Ising

On finite lattices, Z > 0 and regular for real , h



Lee-Yang Zero
3d-Ising

7 — 0 ;< Z<,-,j>0i0j—h2i0i>
10}

On finite lattices, Z > O and regular for real ¢, h
h;  butcan have Z = 0 for complex t, h.

hR LYZ: zero of Z(t, h, L) for complex h



Lee-Yang Zero
3d-Ising

%”( z(i,j) Giaj o hzi0i>

On finite lattices, Z > 0 and regular for real , h

h;  butcan have Z = 0 for complex t, h.

hR LYZ: zero of Z(t, h, L) for complex h

Known to distribute on the imaginary A axis.
[Yang-Lee (1952)]




Lee-Yang Zero
3d-Ising

As [. — 00, the distribution becomes denser.
¥ t < 0 = pinches the real axis
indicating the 1st order transition at L = oo

¥ t > (0 = make a couple of lines
leaving a gap around the real axis

nth LYZ from the real axis:
Iy yvies(t) # 0 (zr > 0)
a(?) 2’”;1 . 0 (< 0)

(n)
hLY(t’ L) _)L—>OO




Lee-Yang Edge Singularity

3d'|5mg . Lee-Yang Edge Singularity

hyvis o Pt from the scaling relation in the L — oo limit
[Stephanov (20006)]

Application to QCD assuming h&) ~ Iy ypg at finite L
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, [Basar, PRC 110, 074511 (2024)]
HotQCD Taylor coeff's, Np =2 + 1 HISQ, N, =8 — 12

T ~ 100MeV, ug™ ~ 580 MeV

[Clarke+, arXiv:2405.10196 (2024)]

((((((

Np =2+ 1HISQ, N, = 6, N, = 36, imag. ug

T =105 MeV, ug™* = 422+7MeV

[Adam+, arXiv:2502.03211 (2025)]
Wuppertal-Budapest Taylor coeff's, Np =2+ 1, N, =8, N, = 16

TP < 103 MeV, or no CEP



Lee_Yang ZerO [Wada-Kitazawa-KK, arXiv:2508.20422 — JPSJ]

Wolf cluster algorithm + reweighting

3d-Ising L =16, - 192,256
TC =1 n="2 3 1-values around 1
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2nd
-5 | 11) LY sz |
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-5 | & < _
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o ° ¢ ¢ ® ® ® I
® ® ? °
o1 | larger L ? -
s ¢ 3
s ¢ 8 |3 I
8 S
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scaling functions

Finite-size scaling of LYZ:~‘,/ N

Near the CP, F(t,h,L) ~ Fino(1, h,L)=F(L"t,L°"h) = Z~ Slng(t h, &) = Z(Lt, L"'h)

— = 2 — —

,—'-‘v«—g‘&x* _ =

LYZ: = @ Lyhh(”)(t L) = h<”‘> (M) ‘

[Itzykson (1 983)]

3d-Ising LYZs [Wada-Kitazawa-KK, arXiv:2508.20422 — JPSJ]
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Lee-Yang ZerO Rati() [Wada-Kitazawa-KK, PRL 134, 162302 (2025)]

Im AY2(¢, L) Rm(t, L
R _(t L)EL(ﬂ +c, Lt + O3 amlt, L)
nm\-? (Wl) nm nm
Im i;/(2, L) on — 1
A\ \1 o —1
LY (1, L) = B)(LY1) = X, + Y, L't + O(t*)
Fnm L — o0
1 (t > O) small L
_) _
T 22:1 —11 (t < O) large L
A\ | .
By vis(f) (t > 0) /

(n)
hLY(t’ L) -0 {Cl(t) 2nl;1 . () (t < O) O

~->
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Binder cumulant

4
B,(t,L) = 21\]\;[2288; g +3=b,+c, Lt+ O@t*) —;_, . {i g z 8;
B,(t, L)
3
¢ LYZR provides us with r/
a hew convenient & independent tool b,
to determine CP small L /
by intersection analyses a la Binder-cumulant.
large 1
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3d-Ising

vir Ry (T, L)

245 \

L=16 —L=24

L =32 L =48
—L=64 —L=96
— L=128 — L =192
— L =256

oasll Luwmy  x*/dolf
1016 5.06
® 24 1.68
® 32 1.26
© 48 1.21
2417 @ 64 1.40
® 96 1.52
@128  1.65
®192 248
2.39 . . . .
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T
R (TL) L=16 —L—24
5.03 x4 1 9 7 — 39 I — 48
—L=64 —L=096
499 —L=128 —L=192
— L =256
4.95
N Lmin XQ/dOf
4911 0 16 4.63
® 24 2.58
187 @32 2.60
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® 64 2.43
4831 @96 2.22
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®192  52x10°
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T

3.79

Lee-Yang Zero Ratio

N T7L) L—16 —L—24
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— L =256
3.73 1
Ly, x°/d.o.f.
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[Wada-Kitazawa-KK, arXiv:2508.20422 — JPSJ]

Our results [

Ferrenberg+
(2018)

Ry,
B,

4

Tc

y_t

45115185(59) | 1.5874(115)
4.5115211(52) 1.5691(86)
4.5115232(1) 1.58723(22)

w LYZR consistent with known
/.andYy,

W LYZR is as powerful as By

W LYZR works with smaller L's

than 5,




Sub-leading contribution in FSS

3d_| sing [Wada-Kitazawa-KK, arXiv:2508.20422 — JPSJ]
. I, 1= TC
FSS fits: R (T,L) =1, +c, Lt+d L7t t = - with 5 fitting param's  [similar for B, t00.]
C
The next-to-linear term not negligible in our fits,
while large non-linearity not desirable. ARym 0, L2 (6T | T,)?
. . ¢ 2
Normalized curvature as a measure of the non-linearity: CRpm L™ 0T :
C,=L7 0101 f=R, _(T,L)or B,(T,L)
= L7 : =R, . (I,L)or : L — :
f of1oT 4 L 0T X —
T=T, : p Y\ .+ 0T
= CfLyf(ST2 = error in 7. obtained by linear approx. of f'sat T'=T. x0T . s f P
| T. by linear approx. of R,

/ Ry, R31 Ry B,
C, | 0.0093(17) 0.0053(17) -0.0010(34) 0.0364(37)

¥ LYZR has smaller sub-leading than B,.
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COrreCtiOnS tO FSS [Wada-Kitazawa-KK, arXiv:2508.20422 — JPSJ]

3d'|Sing an and B4 at Tc = 451 152321(4) [Ferrenberg+ (2018)]

-~ Fit with FSS-correction due to dominant irrelevant op.

2.4395 | —Q)
0 Py Ry(T.,L) = ry (14 cL™)
w; = 0.8303(18) [El-Showk+. (2014)]
2.425 -
2.420 - Ji/]é’H ¥ - N I consistent |
Intersection \ | _ . _
L1 | Thm | VPSS itusing L= 128256 = [y = 2.4195(26)
2410 T ' b, = 1.59892(224)
256 128 64 32 _ R
1/L 20
1.610 o — | discrepant !
) e T=T. (Eq. — p#trsection
160 T . o T=T. ~ E’fjopda“o“ , Fit with FSS-correction = b4 — 1.6023(32)(8)
1222 % = I - N | consistent !
o5 S— —— P
15001 g el + [Ferrenberg+ (2018)] b4 = 1.60356(15)
1.585 - b R SN — .
oo Dy 1 ¥ LYZR has smaller corrections
1.575 . . ' ! '
s o - i than B,.



'Wada-Kitazawa-KK, PRL 134, 162302 (2025)]

General systems in the same universality class

H = 7 "energy" + £ "magnetization”

Map (t,h) ~ (7, &) by linear approx. around the CP:

L B 0T [ a11 412 T — Te
(1) =4 (5e) = (o 22) (=5

N D) L) = i) = X, + Y, Lt + O(t%)

$  LYZforreal T & complex &
0 é{n): gc Z;;éT—I—O(LQ?j) yEyt—yh%—O.89<O
W= Xap-un g At Yo 67 LY + O (L)

_~correction due to the mixing

— = (ryn + Cpp L 67+ O(57%)) (1 + D, L7 + O(LY))

5] (T, L) K Cnm = C,,, detA/azz, Dnm = — (Yg — Yé) 61122/61222
"1, 1S universal
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R (T, L) =



'Wada-Kitazawa-KK, PRL 134, 162302 (2025)]

General systems
LYZR vs. Binder

Ising FSS + mapping (2) — A (?2) — (Zi Z;i) (2:;‘2)
correction due to the mixing

= KT, L) = (r am + G L7107 + 0(572)) (1

Bt L) = (by+ 6, L1+ 0@) (1+d, L + 00

y=y,—y,~ —0.89 <0 forthe Ising universality

¥ LYZR has faster suppression of the mixing-correction than B,
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Lee-Yang Zero Ratio

3d-Potts f 6. =123

Z = Z exp —TZ Og,0. 52 Og..1

10;} (L.])

R, (1, L) | | -

7

—L =9 —I =30
=~ — =40 —L =50
—L =60 —L="70

= O R @ 7321,31,41 —

0.54930 0.54935 0.54940 0.54945
T

3.8

3.7 1

36

35

5.2

50 r

48

4.6

'Wada-Kitazawa-KK, PRL 134, 162302 (2025)]

} even-odd HB + reweighting
( L =24,30,40,50,60,70
56:7-6) h
3 & values around ¢,
P Nt each 10° meas. every 10 HB steps
;
0 >

W similar to Ising

T C
R 21 0.549375(18)
Faln) Iy B_4 [our] 0.549382(11)
B_4 [Karsch (2000)] |0.54938(2)

w consistent with Binder

0.54930

0.54935 0.54940 0.54945

i W LYZR as powerful as B,
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QCD in heavy-quark region

Hopping-parameter expansion to NLO

Np=2QCD SUB) YM

Polyakov loop \

Ser ) |

W CP C D I LO incorporated in the S —_ 6N N3ﬁ>}< }3 _ N3l Q
G ~ j N ) configuration generation G+LO A ) R

S\l ~ |_|_\ + + ﬁ + }[xf NLO incorporated exactly

by reweighting

p* = p+48Nx*, Ak) = 48N Nx* and 128N, Nxk® for N, = 4 and 6
AL, simulated by PHB+OR a la quenched QCD [Kiyohara+, PRD 104 (2021)

o Accuracy of NLO-HPE confirmed up to k.(N, = 6). [Wakabayashi+, PTEP (2022]
@ Effective method developed to incorporate higher orders. [Ashikawa+, PRD 110 (2024)]

Contour plot of [Z(X)/Z(Re))|
A= 0.050, 8 =5.6861, L, =48, N

;=4
0.005 < = 0

= =
~ Large lattices & high stat. enabled. [ Sl
@ =@ -3 1.66{ HH LT=12-6 _
< 0.003 S — ]

2 ~ = precision studies of Binder-cumulant 1o

— 0.002
162 Ao 2. LT: 6

LIl
&

> = LYZs up to 4th order available .. -1 _::
5000 | = | B [Ejiri, PRD 73, 054502 (2006)] N i
0.003 0.004 0.005 0.006 0.007 ' 0.0048 O.0b570 ! 50055
Re A

21 A



Lee-Yang ZerO RatiO [Wada-Kitazawa-KK, PoS (LATTICE 2024) 167; on-going]

S — — 6N.N3B* ]’5 — N3, SAZ HPE NLO, PHB-OR + reweighting
thCD G+LO J S’B S R N,=4,6], LT=N,/N,=6,---,12[---,18]

each (510 10) X 10° meas. every 5 PHB-OR steps

* | | 1 |
RZl(ﬁ ) =60 |
T 5 | | =72 -
250 B 1 &9 Qf -
x60 x108 pre 5 & .
2.45 XA A -
S 24 P =
2.40 % . 1 g_ -
2.35 5 } & -
23| ool
| T ¥ Y
230 N,=4 | s a7 | N=6
r —N, =40 —N, =48 =% - r
2.25 ! ' 2 9 | | - ,
5.6850 5.6855 5.6860 5.68¢ 5.8865 5.8870 5.8875 5.8880

" >
pF = 5.68560(20) 6 p
cf.) 5.68579(26) by the Binder cumulant method.

w consistent with Binder
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Universality of r,,

2.44
21
2.42 - }
®

2.40 -

2.38- ®

2.36
Taking uncertainties due to differences " hqQCD
in simulations/analyses into account, Isilng Potts N, — 4 N, — 6

: : : : L = 40-70
W ~consistent with Z2 universality (?) | ] [T<12  LT<IS |
L - o L : Finite

more studies in hg-QCD needed.
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Summary

Lee-Yang Zero Ratio: a new & independent tool to study CP
= intersection analyses a /la Binder-cumulant.

Test study of LYZR in 3d-Ising, 3d-Potts, and heavy-quark QCD (on-going)

W LYZR gives CP consistent with known results.
W LYZR is as powerful as Binder-cumulant.
W New universal constants r,  determined.

LYZR vs. Binder
LYZR has

¥ smaller sub-leading contrib. in FSS | LYZR works with smaller L's

¢ smaller FSS-corrections .
¢ faster suppression of the mixing-corrections in general systems.

Application to heavy-quark QCD in progress.

24



